The two main functionalities of this package are creating mock objects (functions) and selectively intercepting calls to a given function that originate in some other function. It can be used with any testing framework available for R. Mock objects can be injected with either this package's own stub function or a similar with_mock facility present in the testthat package.
Read, manipulate and write voxel spaces. Voxel spaces are read from text-based output files of the AMAPVox software. AMAPVox is a LiDAR point cloud voxelisation software that aims at estimating leaf area through several theoretical/numerical approaches. See more in the article Vincent et al. (2017) <doi:10.23708/1AJNMP> and the technical note Vincent et al. (2021) <doi:10.23708/1AJNMP>.
Estimation of association between disease or death counts (e.g. COVID-19) and socio-environmental risk factors using a zero-inflated Bayesian spatiotemporal model. Non-spatiotemporal models and/or models without zero-inflation are also included for comparison. Functions to produce corresponding maps are also included. See Chakraborty et al. (2022) <doi:10.1007/s13253-022-00487-1> for more details on the method.
Generate urls and hyperlinks to commonly used biological databases and resources based on standard identifiers. This is primarily useful when writing dynamic reports that reference things like gene symbols in text or tables, allowing you to, for example, convert gene identifiers to hyperlinks pointing to their entry in the NCBI Gene database. Currently supports NCBI Gene, PubMed', Gene Ontology, KEGG', CRAN and Bioconductor.
Simple functions for plotting linear calibration functions and estimating standard errors for measurements according to the Handbook of Chemometrics and Qualimetrics: Part A by Massart et al. (1997) There are also functions estimating the limit of detection (LOD) and limit of quantification (LOQ). The functions work on model objects from - optionally weighted - linear regression (lm) or robust linear regression ('rlm from the MASS package).
Dynamic and Interactive Maps with R, powered by leaflet <https://leafletjs.com>. evolMap generates a web page with interactive and dynamic maps to which you can add geometric entities (points, lines or colored geographic areas), and/or markers with optional links between them. The dynamic ability of these maps allows their components to evolve over a continuous period of time or by periods.
Expectile regression is a nice tool for estimating the conditional expectiles of a response variable given a set of covariates. This package implements a regression tree based gradient boosting estimator for nonparametric multiple expectile regression, proposed by Yang, Y., Qian, W. and Zou, H. (2018) <doi:10.1080/00949655.2013.876024>. The code is based on the gbm package originally developed by Greg Ridgeway.
For ordinal rating data, consider the accelerated EM algorithm to estimate and test models within the family of CUB models (where CUB stands for Combination of a discrete Uniform and a shifted Binomial distributions). The procedure is built upon Louis identity for the observed information matrix. Best-subset variable selection is then implemented since it becomes more feasible from the computational point of view.
Fits sparse interaction models for continuous and binary responses subject to the strong (or weak) hierarchy restriction that an interaction between two variables only be included if both (or at least one of) the variables is included as a main effect. For more details, see Bien, J., Taylor, J., Tibshirani, R., (2013) "A Lasso for Hierarchical Interactions." Annals of Statistics. 41(3). 1111-1141.
The penalized inverse-variance weighted (pIVW) estimator is a Mendelian randomization method for estimating the causal effect of an exposure variable on an outcome of interest based on summary-level GWAS data. The pIVW estimator accounts for weak instruments and balanced horizontal pleiotropy simultaneously. See Xu S., Wang P., Fung W.K. and Liu Z. (2022) <doi:10.1111/biom.13732>.
Extends the mlr3 ecosystem to functional analysis by adding support for irregular and regular functional data as defined in the tf package. The package provides PipeOps for preprocessing functional columns and for extracting scalar features, thereby allowing standard machine learning algorithms to be applied afterwards. Available operations include simple functional features such as the mean or maximum, smoothing, interpolation, flattening, and functional PCA'.
Comprehensive network analysis package. Calculate correlation network fastly, accelerate lots of analysis by parallel computing. Support for multi-omics data, search sub-nets fluently. Handle bigger data, more than 10,000 nodes in each omics. Offer various layout method for multi-omics network and some interfaces to other software ('Gephi', Cytoscape', ggplot2'), easy to visualize. Provide comprehensive topology indexes calculation, including ecological network stability.
This package provides transfusion-related differential tests on Near-infrared spectroscopy (NIRS) time series with detection limit, which contains two testing statistics: Mean Area Under the Curve (MAUC) and slope statistic. This package applied a penalized spline method within imputation setting. Testing is conducted by a nested permutation approach within imputation. Refer to Guo et al (2018) <doi:10.1177/0962280218786302> for further details.
Distributed reproducible computing framework, adopting ideas from git, docker and other software. By defining a lightweight interface around the inputs and outputs of an analysis, a lot of the repetitive work for reproducible research can be automated. We define a simple format for organising and describing work that facilitates collaborative reproducible research and acknowledges that all analyses are run multiple times over their lifespans.
XKCD described a supposedly "bad" colormap that it called a "Painbow" (see <https://xkcd.com/2537/>). But simple tests demonstrate that under some circumstances, the colormap can perform very well, and people can find information that is difficult to detect with the ggplot2 default and even supposedly "good" colormaps like viridis. This library let's you use the Painbow in your own ggplot graphs.
This package provides functions to simulate Pool-seq data under models of demographic formation and to import Pool-seq data from real populations. Implements two ABC algorithms for performing parameter estimation and model selection using Pool-seq data. Cross-validation can also be performed to assess the accuracy of ABC estimates and model choice. Carvalho et al., (2022) <doi:10.1111/1755-0998.13834>.
Consolidated data simulation, sample size calculation and analysis functions for several snSMART (small sample sequential, multiple assignment, randomized trial) designs under one library. See Wei, B., Braun, T.M., Tamura, R.N. and Kidwell, K.M. "A Bayesian analysis of small n sequential multiple assignment randomized trials (snSMARTs)." (2018) Statistics in medicine, 37(26), pp.3723-3732 <doi:10.1002/sim.7900>.
Estimating the Shapley values using the algorithm in the paper Liuqing Yang, Yongdao Zhou, Haoda Fu, Min-Qian Liu and Wei Zheng (2024) <doi:10.1080/01621459.2023.2257364> "Fast Approximation of the Shapley Values Based on Order-of-Addition Experimental Designs". You provide the data and define the value function, it retures the estimated Shapley values based on sampling methods or experimental designs.
This package provides a set of tools for creation, manipulation, and modeling of tensors with arbitrary number of modes. A tensor in the context of data analysis is a multidimensional array. rTensor does this by providing a S4 class Tensor that wraps around the base array class. rTensor provides common tensor operations as methods, including matrix unfolding, summing/averaging across modes, calculating the Frobenius norm, and taking the inner product between two tensors. Familiar array operations are overloaded, such as index subsetting via [ and element-wise operations. rTensor also implements various tensor decomposition, including CP, GLRAM, MPCA, PVD, and Tucker. For tensors with 3 modes, rTensor also implements transpose, t-product, and t-SVD, as defined in Kilmer et al. (2013). Some auxiliary functions include the Khatri-Rao product, Kronecker product, and the Hadamard product for a list of matrices.
This package provides a function for estimating the parameters of Structural Bayesian Vector Autoregression models with the method developed by Baumeister and Hamilton (2015) <doi:10.3982/ECTA12356>, Baumeister and Hamilton (2017) <doi:10.3386/w24167>, and Baumeister and Hamilton (2018) <doi:10.1016/j.jmoneco.2018.06.005>. Functions for plotting impulse responses, historical decompositions, and posterior distributions of model parameters are also provided.
This package provides a tool for the preparation and enrichment of health datasets for analysis (Toner et al. (2023) <doi:10.1093/gigascience/giad030>). Provides functionality for assessing data quality and for improving the reliability and machine interpretability of a dataset. eHDPrep also enables semantic enrichment of a dataset where metavariables are discovered from the relationships between input variables determined from user-provided ontologies.
Solves a least squares system Ax~=b (dim(A)=(m,n) with m >= n) with a precondition matrix B: BAx=Bb (dim(B)=(n,m)). Implemented method is based on GMRES (Saad, Youcef; Schultz, Martin H. (1986). "GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems" <doi:10.1137/0907058>) with callback functions, i.e. no explicit A, B or b are required.
This package provides tools for manipulating, visualizing, and exporting raster images in R. Designed as an educational resource for students learning the basics of remote sensing, the package provides user-friendly functions to apply color ramps, export RGB composites, and create multi-frame visualizations. Built on top of the terra and ggplot2 packages. See <https://github.com/ducciorocchini/imageRy> for more details and examples.
This package provides a collection of methods for large scale single mediator hypothesis testing. The six included methods for testing the mediation effect are Sobel's test, Max P test, joint significance test under the composite null hypothesis, high dimensional mediation testing, divide-aggregate composite null test, and Sobel's test under the composite null hypothesis. Du et al (2023) <doi:10.1002/gepi.22510>.