Streamlines and accelerates the process of saving and loading R objects, improving speed and compression compared to other methods. The package provides two compression formats: the qs2 format, which uses R serialization via the C API while optimizing compression and disk I/O, and the qdata format, featuring custom serialization for slightly faster performance and better compression. Additionally, the qs2 format can be directly converted to the standard RDS format, ensuring long-term compatibility with future versions of R.
This package produces quality scores for each of the US companies from the Russell 3000, following the approach described in "Quality Minus Junk" (Asness, Frazzini, & Pedersen, 2013) <http://www.aqr.com/library/working-papers/quality-minus-junk>. The package includes datasets for users who wish to view the most recently uploaded quality scores. It also provides tools to automatically gather relevant financials and stock price information, allowing users to update their data and customize their universe for further analysis.
We provide a suite of tools for estimating the sample complexity of a chosen model through theoretical bounds and simulation. The package incorporates methods for estimating the Vapnik-Chervonenkis dimension (VCD) of a chosen algorithm, which can be used to estimate its sample complexity. Alternatively, we provide simulation methods to estimate sample complexity directly. For more details, see Carter, P & Choi, D (2024). "Learning from Noise: Applying Sample Complexity for Political Science Research" <doi:10.31219/osf.io/evrcj>.
This package provides conditional maximum likelihood (CML) item parameter estimation of both sequential and cumulative deterministic multistage designs (Zwitser & Maris, 2015, <doi:10.1007/s11336-013-9369-6>) and probabilistic sequential and cumulative multistage designs (Steinfeld & Robitzsch, 2024, <doi:10.1007/s41237-024-00228-3>). Supports CML item parameter estimation of conventional linear designs and additional functions for the likelihood ratio test (Andersen, 1973, <doi:10.1007/BF02291180>) as well as functions for simulating various types of multistage designs.
This package provides tools for the visualization of missing and/or imputed values are introduced, which can be used for exploring the data and the structure of the missing and/or imputed values. Depending on this structure of the missing values, the corresponding methods may help to identify the mechanism generating the missing values and explore the data including missing values. In addition, the quality of imputation can be visually explored using various univariate, bivariate, multiple and multivariate plot methods.
Extract and process bird sightings records from eBird (<http://ebird.org>), an online tool for recording bird observations. Public access to the full eBird database is via the eBird Basic Dataset (EBD; see <http://ebird.org/ebird/data/download> for access), a downloadable text file. This package is an interface to AWK for extracting data from the EBD based on taxonomic, spatial, or temporal filters, to produce a manageable file size that can be imported into R.
This package provides a collection of tests to analyze the causal direction of dependence in linear models (Wiedermann, W., & von Eye, A., 2025, ISBN: 9781009381390). The package includes functions to perform Direction Dependence Analysis for variable distributions, residual distributions, and independence properties of predictors and residuals in competing causal models. In addition, the package contains functions to test the causal direction of dependence in conditional models (i.e., models with interaction terms) For more information see <https://www.ddaproject.com>.
Supports the analysis of Oceanographic data, including ADCP measurements, measurements made with argo floats, CTD measurements, sectional data, sea-level time series, coastline and topographic data, etc. Provides specialized functions for calculating seawater properties such as potential temperature in either the UNESCO or TEOS-10 equation of state. Produces graphical displays that conform to the conventions of the Oceanographic literature. This package is discussed extensively by Kelley (2018) "Oceanographic Analysis with R" <doi:10.1007/978-1-4939-8844-0>.
Computes the optimal flow, Nash flow and the Price of Anarchy for any routing game defined within the game theoretical framework. The input is a routing game in the form of itâ s cost and flow functions. Then transforms this into an optimisation problem, allowing both Nash and Optimal flows to be solved by nonlinear optimisation. See <https://en.wikipedia.org/wiki/Congestion_game> and Knight and Harper (2013) <doi:10.1016/j.ejor.2013.04.003> for more information.
Binding models which are useful when analysing protein-ligand interactions by techniques such as Biolayer Interferometry (BLI) or Surface Plasmon Resonance (SPR). Naman B. Shah, Thomas M. Duncan (2014) <doi:10.3791/51383>. Hoang H. Nguyen et al. (2015) <doi:10.3390/s150510481>. After initial binding parameters are known, binding curves can be simulated and parameters can be varied. The models within this package may also be used to fit a curve to measured binding data using non-linear regression.
Fit computational and measurement models using full Bayesian inference. The package provides a simple and accessible interface by translating complex domain-specific models into brms syntax, a powerful and flexible framework for fitting Bayesian regression models using Stan'. The package is designed so that users can easily apply state-of-the-art models in various research fields, and so that researchers can use it as a new model development framework. References: Frischkorn and Popov (2023) <doi:10.31234/osf.io/umt57>.
This package implements the dynamic panel models described by Allison, Williams, and Moral-Benito (2017 <doi:10.1177/2378023117710578>) in R. This class of models uses structural equation modeling to specify dynamic (lagged dependent variable) models with fixed effects for panel data. Additionally, models may have predictors that are only weakly exogenous, i.e., are affected by prior values of the dependent variable. Options also allow for random effects, dropping the lagged dependent variable, and a number of other specification choices.
Perform robust inference based on applying Fast and Robust Bootstrap on robust estimators (Van Aelst and Willems (2013) <doi:10.18637/jss.v053.i03>). This method constitutes an alternative to ordinary bootstrap or asymptotic inference. procedures when using robust estimators such as S-, MM- or GS-estimators. The available methods are multivariate regression, principal component analysis and one-sample and two-sample Hotelling tests. It provides both the robust point estimates and uncertainty measures based on the fast and robust bootstrap.
This package contains the framework of the estimation, sampling, and hypotheses testing for two special distributions (Exponentiated Exponential-Pareto and Exponentiated Inverse Gamma-Pareto) within the family of Generalized Exponentiated Composite distributions. The detailed explanation and the applications of these two distributions were introduced in Bowen Liu, Malwane M.A. Ananda (2022) <doi:10.1080/03610926.2022.2050399>, Bowen Liu, Malwane M.A. Ananda (2022) <doi:10.3390/math10111895>, and Bowen Liu, Malwane M.A. Ananda (2022) <doi:10.3390/app13010645>.
This package provides a general and efficient tool for fitting a response surface to a dataset via Gaussian processes. The dataset can have multiple responses and be noisy (with stationary variance). The fitted GP model can predict the gradient as well. The package is based on the work of Bostanabad, R., Kearney, T., Tao, S. Y., Apley, D. W. & Chen, W. (2018) Leveraging the nugget parameter for efficient Gaussian process modeling. International Journal for Numerical Methods in Engineering, 114, 501-516.
Reproducible work requires a record of where every statistic originated. When writing reports, some data is too big to load in the same environment and some statistics take a while to compute. This package offers a way to keep notes on statistics, simple functions, and small objects. Notepads can be locked to avoid accidental updates. Notepads keep track of who added the notes and when the notes were added. A simple text representation is used to allow for clear version histories.
This package provides tools for cleaning, processing, and preparing microbiome sequencing data (e.g., 16S rRNA) for downstream analysis. Supports CSV, TXT, and Excel file formats. The main function, ezclean(), automates microbiome data transformation, including format validation, transposition, numeric conversion, and metadata integration. It also handles taxonomic levels efficiently, resolves duplicated taxa entries, and outputs a well-structured, analysis-ready dataset. The companion functions ezstat() run statistical tests and summarize results, while ezviz() produces publication-ready visualizations.
This package provides functions to select samples using PPS (probability proportional to size) sampling. The package also includes a function for stratified simple random sampling, a function to compute joint inclusion probabilities for Sampford's method of PPS sampling, and a few utility functions. The user's guide pps-ug.pdf is included in the .../pps/doc directory. The methods are described in standard survey sampling theory books such as Cochran's "Sampling Techniques"; see the user's guide for references.
Evaluation of control charts by means of the zero-state, steady-state ARL (Average Run Length) and RL quantiles. Setting up control charts for given in-control ARL. The control charts under consideration are one- and two-sided EWMA, CUSUM, and Shiryaev-Roberts schemes for monitoring the mean or variance of normally distributed independent data. ARL calculation of the same set of schemes under drift (in the mean) are added. Eventually, all ARL measures for the multivariate EWMA (MEWMA) are provided.
This package provides a collection of tools and functions to adjust a variety of stochastic blockmodels (SBM). Supports at the moment Simple, Bipartite, Multipartite and Multiplex SBM (undirected or directed with Bernoulli, Poisson or Gaussian emission laws on the edges, and possibly covariate for Simple and Bipartite SBM). See Léger (2016) <doi:10.48550/arXiv.1602.07587>, Barbillon et al. (2020) <doi:10.1111/rssa.12193> and Bar-Hen et al. (2020) <doi:10.48550/arXiv.1807.10138>.
Node centrality measures for temporal networks. Available measures are temporal degree centrality, temporal closeness centrality and temporal betweenness centrality defined by Kim and Anderson (2012) <doi:10.1103/PhysRevE.85.026107>. Applying the REN algorithm by Hanke and Foraita (2017) <doi:10.1186/s12859-017-1677-x> when calculating the centrality measures keeps the computational running time linear in the number of graph snapshots. Further, all methods can run in parallel up to the number of nodes in the network.
This package contains a robust set of tools designed for constructing deep neural networks, which are highly adaptable with user-defined loss function and probability models. It includes several practical applications, such as the (deepAFT) model, which utilizes a deep neural network approach to enhance the accelerated failure time (AFT) model for survival data. Another example is the (deepGLM) model that applies deep neural network to the generalized linear model (glm), accommodating data types with continuous, categorical and Poisson distributions.
Runs a Shiny App in the local machine for basic statistical and graphical analyses. The point-and-click interface of Shiny App enables obtaining the same analysis outputs (e.g., plots and tables) more quickly, as compared with typing the required code in R, especially for users without much experience or expertise with coding. Examples of possible analyses include tabulating descriptive statistics for a variable, creating histograms by experimental groups, and creating a scatter plot and calculating the correlation between two variables.
This package provides a framework to build and evaluate diagnosis or prognosis models using stacking, voting, and bagging ensemble techniques with various base learners. The package also includes tools for visualization and interpretation of models. The development version of the package is available on GitHub at <https://github.com/xiaojie0519/E2E>. The methods are based on the foundational work of Breiman (1996) <doi:10.1007/BF00058655> on bagging and Wolpert (1992) <doi:10.1016/S0893-6080(05)80023-1> on stacking.