EBImage provides general purpose functionality for image processing and analysis. In the context of (high-throughput) microscopy-based cellular assays, EBImage offers tools to segment cells and extract quantitative cellular descriptors. This allows the automation of such tasks using the R programming language and facilitates the use of other tools in the R environment for signal processing, statistical modeling, machine learning and visualization with image data.
This package provides a function for estimating the parameters of Structural Bayesian Vector Autoregression models with the method developed by Baumeister and Hamilton (2015) <doi:10.3982/ECTA12356>, Baumeister and Hamilton (2017) <doi:10.3386/w24167>, and Baumeister and Hamilton (2018) <doi:10.1016/j.jmoneco.2018.06.005>. Functions for plotting impulse responses, historical decompositions, and posterior distributions of model parameters are also provided.
This package provides a tool for the preparation and enrichment of health datasets for analysis (Toner et al. (2023) <doi:10.1093/gigascience/giad030>). Provides functionality for assessing data quality and for improving the reliability and machine interpretability of a dataset. eHDPrep also enables semantic enrichment of a dataset where metavariables are discovered from the relationships between input variables determined from user-provided ontologies.
Solves a least squares system Ax~=b (dim(A)=(m,n) with m >= n) with a precondition matrix B: BAx=Bb (dim(B)=(n,m)). Implemented method is based on GMRES (Saad, Youcef; Schultz, Martin H. (1986). "GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems" <doi:10.1137/0907058>) with callback functions, i.e. no explicit A, B or b are required.
This package provides tools for manipulating, visualizing, and exporting raster images in R. Designed as an educational resource for students learning the basics of remote sensing, the package provides user-friendly functions to apply color ramps, export RGB composites, and create multi-frame visualizations. Built on top of the terra and ggplot2 packages. See <https://github.com/ducciorocchini/imageRy> for more details and examples.
This package provides a framework for multiple hypothesis testing based on distribution of p values. It is well known that the p values come from different distribution for null and alternatives, in this package we provide functions to detect that change. We provide a method for using the change in distribution of p values as a way to detect the true signals in the data.
Estimates Variable Length Markov Chains (VLMC) models and VLMC with covariates models from discrete sequences. Supports model selection via information criteria and simulation of new sequences from an estimated model. See Bühlmann, P. and Wyner, A. J. (1999) <doi:10.1214/aos/1018031204> for VLMC and Zanin Zambom, A., Kim, S. and Lopes Garcia, N. (2022) <doi:10.1111/jtsa.12615> for VLMC with covariates.
This package provides a collection of methods for large scale single mediator hypothesis testing. The six included methods for testing the mediation effect are Sobel's test, Max P test, joint significance test under the composite null hypothesis, high dimensional mediation testing, divide-aggregate composite null test, and Sobel's test under the composite null hypothesis. Du et al (2023) <doi:10.1002/gepi.22510>.
Applies an objective Bayesian method to the Mb capture-recapture model to estimate the population size N. The Mb model is a class of capture-recapture methods used to account for variations in capture probability due to animal behavior. Under the Mb formulation, the initial capture of an animal may effect the probability of subsequent captures due to their becoming "trap happy" or "trap shy.".
An interface to the Apache OpenNLP tools (version 1.5.3). The Apache OpenNLP library is a machine learning based toolkit for the processing of natural language text written in Java. It supports the most common NLP tasks, such as tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking, parsing, and coreference resolution. See <https://opennlp.apache.org/> for more information.
Creating maps for statistical analysis such as proportional circles, choropleth, typology and flows. Some functions use shiny or leaflet technologies for dynamism and interactivity. The great features are : - Create maps in a web environment where the parameters are modifiable on the fly ('shiny and leaflet technologies). - Create interactive maps through zoom and pop-up ('leaflet technology). - Create frozen maps with the possibility to add labels.
Simple method of purging independent variables of mediating effects. First, regress the direct variable on the indirect variable. Then, used the stored residuals as the new purged (direct) variable in the updated specification. This purging process allows for use of a new direct variable uncorrelated with the indirect variable. Please cite the method and/or package using Waggoner, Philip D. (2018) <doi:10.1177/1532673X18759644>.
Implementation of SAPEVO-M, a Group Ordinal Method for Multiple Criteria Decision-Making (MCDM). SAPEVO-M is an acronym for Simple Aggregation of Preferences Expressed by Ordinal Vectors Group Decision Making. This method provides alternatives ranking given decision makers preferences: criteria preferences and alternatives preferences for each criterion.This method is described in Gomes et al. (2020) <doi: 10.1590/0101-7438.2020.040.00226524 >.
An implementation of self-exciting point process model for information cascades, which occurs when many people engage in the same acts after observing the actions of others (e.g. post resharings on Facebook or Twitter). It provides functions to estimate the infectiousness of an information cascade and predict its popularity given the observed history. See <http://snap.stanford.edu/seismic/> for more information and datasets.
This package provides tools for analyzing and understanding the file contents of large shiny application directories. The package extracts key information about render functions, reactive functions, and their inputs from app files, organizing them into structured data frames for easy reference. This streamlines the onboarding process for new contributors and helps identify areas for optimization in complex shiny codebases with multiple files and sourcing chains.
This package provides tools to download data series from Banco de España ('BdE') on tibble format. Banco de España is the national central bank and, within the framework of the Single Supervisory Mechanism ('SSM'), the supervisor of the Spanish banking system along with the European Central Bank. This package is in no way sponsored endorsed or administered by Banco de España'.
Computation of approximate potentials for both gradient and non gradient fields. It is known from physics that only gradient fields, also known as conservative, have a well defined potential function. Here we present an algorithm, based on the classical Helmholtz decomposition, to obtain an approximate potential function for non gradient fields. More information in Rodrà guez-Sánchez (2020) <doi:10.1371/journal.pcbi.1007788>.
This tool takes longitudinal dataset as input and analyzes if there is significant change of the features over time (a proxy for treatments), while detects and controls for covariates simultaneously. LongDat is able to take in several data types as input, including count, proportion, binary, ordinal and continuous data. The output table contains p values, effect sizes and covariates of each feature, making the downstream analysis easy.
This package uses a statistical framework for rapid and accurate detection of aneuploid cells with local copy number deletion or amplification. Our method uses an EM algorithm with mixtures of Poisson distributions while incorporating cytogenetics information (e.g., regional deletion or amplification) to guide the classification (partCNV). When applicable, we further improve the accuracy by integrating a Hidden Markov Model for feature selection (partCNVH).
PanomiR is a package to detect miRNAs that target groups of pathways from gene expression data. This package provides functionality for generating pathway activity profiles, determining differentially activated pathways between user-specified conditions, determining clusters of pathways via the PCxN package, and generating miRNAs targeting clusters of pathways. These function can be used separately or sequentially to analyze RNA-Seq data.
The package allows for predicting whether a coiled coil sequence (amino acid sequence plus heptad register) is more likely to form a dimer or more likely to form a trimer. Additionally to the prediction itself, a prediction profile is computed which allows for determining the strengths to which the individual residues are indicative for either class. Prediction profiles can also be visualized as curves or heatmaps.
This package does k-nearest neighbor based statistics and visualizations with flow and mass cytometery data. This gives tSNE maps"fold change" functionality and provides a data quality metric by assessing manifold overlap between fcs files expected to be the same. Other applications using this package include imputation, marker redundancy, and testing the relative information loss of lower dimension embeddings compared to the original manifold.
Interactive R tutorials written using learnr for Field (2016), "An Adventure in Statistics", <ISBN:9781446210451>. Topics include general workflow in R and Rstudio', the R environment and tidyverse', summarizing data, model fitting, central tendency, visualising data using ggplot2', inferential statistics and robust estimation, hypothesis testing, the general linear model, comparing means, repeated measures designs, factorial designs, multilevel models, growth models, and generalized linear models (logistic regression).
Streamline use of the All of Us Researcher Workbench (<https://www.researchallofus.org/data-tools/workbench/>)with tools to extract and manipulate data from the All of Us database. Increase interoperability with the Observational Health Data Science and Informatics ('OHDSI') tool stack by decreasing reliance of All of Us tools and allowing for cohort creation via Atlas'. Improve reproducible and transparent research using All of Us'.