This package implements marginal structural models combined with a latent class growth analysis framework for assessing the causal effect of treatment trajectories. Based on the approach described in "Marginal Structural Models with Latent Class Growth Analysis of Treatment Trajectories" Diop, A., Sirois, C., Guertin, J.R., Schnitzer, M.E., Candas, B., Cossette, B., Poirier, P., Brophy, J., Mésidor, M., Blais, C. and Hamel, D., (2023) <doi:10.1177/09622802231202384>.
There are two new network metrics, RWC (random walk centrality) and CBET (counting betweenness). Also available are the normalized versions of those metrics. These measures of centrality and betweenness are particularly useful for the analysis of very dense weighted networks which include loops. Traditional measures do not work as well for those network characteristics. The main reference is DePaolis at al (2022) <doi:10.1007/s41109-022-00519-2>.
This package provides a model designed for dimensionality reduction and batch effect removal for scRNA-seq data. It is designed to be massively parallelizable using shared objects that prevent memory duplication, and it can be used with different mini-batch approaches in order to reduce time consumption. It assumes a negative binomial distribution for the data with a dispersion parameter that can be both commonwise across gene both genewise.
This package provides functions for identification and visualization of potential intramolecular triplex patterns in DNA sequence. The main functionality is to detect the positions of subsequences capable of folding into an intramolecular triplex (H-DNA) in a much larger sequence. The potential H-DNA (triplexes) should be made of as many cannonical nucleotide triplets as possible. The package includes visualization showing the exact base-pairing in 1D, 2D or 3D.
EpiDISH is a R package to infer the proportions of a priori known cell-types present in a sample representing a mixture of such cell-types. Right now, the package can be used on DNAm data of whole blood, generic epithelial tissue and breast tissue. Besides, the package provides a function that allows the identification of differentially methylated cell-types and their directionality of change in Epigenome-Wide Association Studies.
Perform common useful JavaScript operations in Shiny apps that will greatly improve your apps without having to know any JavaScript. Examples include: hiding an element, disabling an input, resetting an input back to its original value, delaying code execution by a few seconds, and many more useful functions for both the end user and the developer. Shinyjs can also be used to easily call your own custom JavaScript functions from R.
This package provides a system for embedded scientific computing and reproducible research with R. The OpenCPU server exposes a simple but powerful HTTP API for RPC and data interchange with R. This provides a reliable and scalable foundation for statistical services or building R web applications. The OpenCPU server runs either as a single-user development server within the interactive R session, or as a multi-user stack based on Apache2.
This package provides the Open Source Geometry Engine (GEOS) as a C API that can be used to write high-performance C and C++ geometry operations using R as an interface. Headers are provided to make linking to and using these functions from C++ code as easy and as safe as possible. This package contains an internal copy of the GEOS library to guarantee the best possible consistency on multiple platforms.
This package implements various estimators of entropy, such as the shrinkage estimator by Hausser and Strimmer, the maximum likelihood and the Millow-Madow estimator, various Bayesian estimators, and the Chao-Shen estimator. It also offers an R interface to the NSB estimator. Furthermore, it provides functions for estimating Kullback-Leibler divergence, chi-squared, mutual information, and chi-squared statistic of independence. In addition there are functions for discretizing continuous random variables.
This package is a collection of ANSI escape code related libraries enabling ANSI colorization and stylization of console output. Included in the library are the Code module, which defines ANSI codes as constants and methods, a Mixin module for including color methods, a Logger, a ProgressBar, and a String subclass. The library also includes a Terminal module which provides information about the current output device.
This package provides functions and command-line user interface to generate allocation sequence by response-adaptive randomization for clinical trials. The package currently supports two families of frequentist response-adaptive randomization procedures, Doubly Adaptive Biased Coin Design ('DBCD') and Sequential Estimation-adjusted Urn Model ('SEU'), for binary and normal endpoints. One-sided proportion (or mean) difference and Chi-square (or ANOVA') hypothesis testing methods are also available in the package to facilitate the inference for treatment effect. Additionally, the package provides comprehensive and efficient tools to allow one to evaluate and compare the performance of randomization procedures and tests based on various criteria. For example, plots for relationship among assumed treatment effects, sample size, and power are provided. Five allocation functions for DBCD and six addition rule functions for SEU are implemented to target allocations such as Neyman', Rosenberger Rosenberger et al. (2001) <doi:10.1111/j.0006-341X.2001.00909.x> and Urn allocations.
Download data from the Access to Opportunities Project (AOP)'. The aopdata package brings annual estimates of access to employment, health, education and social assistance services by transport mode, as well as data on the spatial distribution of population, jobs, health care, schools and social assistance facilities at a fine spatial resolution for all cities included in the project. More info on the AOP website <https://www.ipea.gov.br/acessooportunidades/en/>.
This package implements the Bayesian FDR control described by Newton et al. (2004), <doi:10.1093/biostatistics/5.2.155>. Allows optimisation and visualisation of expected error rates based on tail posterior probability tests. Based on code written by Catalina Vallejos for BASiCS, see Beyond comparisons of means: understanding changes in gene expression at the single-cell level Vallejos et al. (2016) <doi:10.1186/s13059-016-0930-3>.
This package provides a ggplot2 centric approach to bivariate mapping. This is a technique that maps two quantities simultaneously rather than the single value that most thematic maps display. The package provides a suite of tools for calculating breaks using multiple different approaches, a selection of palettes appropriate for bivariate mapping and scale functions for ggplot2 calls that adds those palettes to maps. Tools for creating bivariate legends are also included.
This package implements non-parametric analyses for clustered binary and multinomial data. The elements of the cluster are assumed exchangeable, and identical joint distribution (also known as marginal compatibility, or reproducibility) is assumed for clusters of different sizes. A trend test based on stochastic ordering is implemented. Szabo A, George EO. (2010) <doi:10.1093/biomet/asp077>; George EO, Cheon K, Yuan Y, Szabo A (2016) <doi:10.1093/biomet/asw009>.
Fit and explore Drift Diffusion Models (DDMs), a common tool in psychology for describing decision processes in simple tasks. It can handle both time-independent and time-dependent DDMs. You either choose prebuilt models or create your own, and the package takes care of model predictions and parameter estimation. Model predictions are derived via the numerical solutions provided by Richter, Ulrich, and Janczyk (2023, <doi:10.1016/j.jmp.2023.102756>).
While autoregressive distributed lag (ARDL) models allow for extremely flexible dynamics, interpreting substantive significance of complex lag structures remains difficult. This package is designed to assist users in dynamically simulating and plotting the results of various ARDL models. It also contains post-estimation diagnostics, including a test for cointegration when estimating the error-correction variant of the autoregressive distributed lag model (Pesaran, Shin, and Smith 2001 <doi:10.1002/jae.616>).
This package provides various tools for analysing density profiles obtained by resistance drilling. It can load individual or multiple files and trim the starting and ending part of each density profile. Tools are also provided to trim profiles manually, to remove the trend from measurements using several methods, to plot the profiles and to detect tree rings automatically. Written with a focus on forestry use of resistance drilling in standing trees.
Streamlines Quarto workflows by providing tools for consistent project setup and documentation. Enables portability through reusable metadata, automated project structure creation, and standardized templates. Features include enhanced project initialization, pre-formatted Quarto documents, inclusion of Quarto brand functionality, comprehensive data protection settings, custom styling, and structured documentation generation. Designed to improve efficiency and collaboration in R data science projects by reducing repetitive setup tasks while maintaining consistent formatting across multiple documents.
Estimation of life expectancy and Life Years Lost (LYL, or lillies for short) for a given population, for example those with a given disease or condition. In addition, the package can be used to compare estimates from different populations, or to estimate confidence intervals. Technical details of the method are available in Plana-Ripoll et al. (2020) <doi:10.1371/journal.pone.0228073> and Andersen (2017) <doi:10.1002/sim.7357>.
This package provides tools to quantify ecological memory in long time-series with Random Forest models (Breiman 2001 <doi:10.1023/A:1010933404324>) fitted with the ranger library (Wright and Ziegler 2017 <doi:10.18637/jss.v077.i01>). Particularly oriented to palaeoecological datasets and simulated pollen curves produced by the virtualPollen package, but also applicable to other long time-series involving a set of environmental drivers and a biotic response.
The functions sp() and sp_seq() compute the support points in Mak and Joseph (2018) <DOI:10.1214/17-AOS1629>. Support points can be used as a representative sample of a desired distribution, or a representative reduction of a big dataset (e.g., an "optimal" thinning of Markov-chain Monte Carlo sample chains). This work was supported by USARO grant W911NF-14-1-0024 and NSF DMS grant 1712642.
Estimating the force of infection from time varying, age varying, or constant serocatalytic models from population based seroprevalence studies using a Bayesian framework, including data simulation functions enabling the generation of serological surveys based on this models. This tool also provides a flexible prior specification syntax for the force of infection and the seroreversion rate, as well as methods to assess model convergence and comparison criteria along with useful visualisation functions.
Implementation of the SSR-Algorithm. The Sign-Simplicity-Regression model is a nonparametric statistical model which is based on residual signs and simplicity assumptions on the regression function. Goal is to calculate the most parsimonious regression function satisfying the statistical adequacy requirements. Theory and functions are specified in Metzner (2020, ISBN: 979-8-68239-420-3, "Trendbasierte Prognostik") and Metzner (2021, ISBN: 979-8-59347-027-0, "Adäquates Maschinelles Lernen").