This package performs key functions for MCMC analysis using minimal code - visualizes, manipulates, and summarizes MCMC output. Functions support simple and straightforward subsetting of model parameters within the calls, and produce presentable and publication-ready output. MCMC output may be derived from Bayesian model output fit with Stan', NIMBLE', JAGS', and other software.
BEAST2 (<https://www.beast2.org>) is a widely used Bayesian phylogenetic tool, that uses DNA/RNA/protein data and many model priors to create a posterior of jointly estimated phylogenies and parameters. mcbette allows to do a Bayesian model comparison over some site and clock models, using babette (<https://github.com/ropensci/babette/>).
Download economic and financial time series from public sources, including the St Louis Fed's FRED system, Yahoo Finance, the US Bureau of Labor Statistics, the US Energy Information Administration, the World Bank, Eurostat, the European Central Bank, the Bank of England, the UK's Office of National Statistics, Deutsche Bundesbank, and INSEE.
Create PostgreSQL
statements/scripts from R, optionally executing the SQL statements. Common SQL operations are included, although not every configurable option is available at this time. SQL output is intended to be compliant with PostgreSQL
syntax specifications. PostgreSQL
documentation is available here <https://www.postgresql.org/docs/current/index.html>.
It fits scale mixture of skew-normal linear mixed models using either an expectationâ maximization (EM) type algorithm or its accelerated version (Damped Anderson Acceleration with Epsilon Monotonicity, DAAREM), including some possibilities for modeling the within-subject dependence. Details can be found in Schumacher, Lachos and Matos (2021) <doi:10.1002/sim.8870>.
Forms likelihood-based confidence intervals (LBCIs) for parameters in structural equation modeling, introduced in Cheung and Pesigan (2023) <doi:10.1080/10705511.2023.2183860>. Currently implements the algorithm illustrated by Pek and Wu (2018) <doi:10.1037/met0000163>, and supports the robust LBCI proposed by Falk (2018) <doi:10.1080/10705511.2017.1367254>.
Adds support for R startup configuration via .Renviron.d and .Rprofile.d directories in addition to .Renviron and .Rprofile files. This makes it possible to keep private / secret environment variables separate from other environment variables. It also makes it easier to share specific startup settings by simply copying a file to a directory.
Get started with new projects by dropping a skeleton of a new project into a new or existing directory, initialise git repositories, and create reproducible environments with the renv package. The package allows for dynamically named files, folders, file content, as well as the functionality to drop individual template files into existing projects.
This package provides a constrained two-dimensional Delaunay triangulation package providing both triangulation and generation of voronoi mosaics of irregular spaced data. Please note that most of the functions are now also covered in package interp, which is a re-implementation from scratch under a free license based on a different triangulation algorithm.
This package performs transformation discrimination analysis and non-transformation discrimination analysis. It also includes functions for Linear Discriminant Analysis, Quadratic Discriminant Analysis, and Mixture Discriminant Analysis. In the context of mixture discriminant analysis, it offers options for both common covariance matrix (common sigma) and individual covariance matrices (uncommon sigma) for the mixture components.
The outcome of various rehabilitation strategies for water distribution systems can be modeled with the Water Management Simulator (WaMaSim
). Pipe breaks and the corresponding damage and rehabilitation costs are simulated. It is mainly intended to be used as educational tool for the Water Infrastructure Experimental and Computer Laboratory at ETH Zurich, Switzerland.
This package provides a unified interface to a variety of GSEA techniques from different bioconductor packages. Results are harmonized into a single object and can be interrogated uniformly for quick exploration and interpretation of results. Interactive exploration of GSEA results is enabled through a shiny app provided by a sparrow.shiny sibling package.
This package analyzes and creates plots of array CGH data. Also, it allows usage of CBS, wavelet-based smoothing, HMM, BioHMM, GLAD, CGHseg. Most computations are parallelized (either via forking or with clusters, including MPI and sockets clusters) and use ff
for storing data.
This package contains the functions to find the gene expression modules that represent the drivers of Kauffman's attractor landscape. The modules are the core attractor pathways that discriminate between different cell types of groups of interest. Each pathway has a set of synexpression groups, which show transcriptionally-coordinated changes in gene expression.
This package provides a collection of functions to explore and to investigate basic properties of financial returns and related quantities. The covered fields include techniques of explorative data analysis and the investigation of distributional properties, including parameter estimation and hypothesis testing. Even more, there are several utility functions for data handling and management.
This crate contains utility functions for path, file and directory handling. There are multiple main modules for fsio:
fsio::path
: Holds path related functions and traits.fsio::file
: File utility functions such as read_file, write_file, etc.fsio::directory
: Directory specific utility functions.
This package provides a single key function, Require that makes rerun-tolerant versions of install.packages and `require` for CRAN packages, packages no longer on CRAN (i.e., archived), specific versions of packages, and GitHub
packages. This approach is developed to create reproducible workflows that are flexible and fast enough to use while in development stages, while able to build snapshots once a stable package collection is found. As with other functions in a reproducible workflow, this package emphasizes functions that return the same result whether it is the first or subsequent times running the function, with subsequent times being sufficiently fast that they can be run every time without undue waiting burden on the user or developer.
Nuclear Decay Data for Dosimetric Calculations from the International Commission on Radiological Protection from ICRP Publication 107. Ann. ICRP 38 (3). Eckerman, Keith and Endo, Akira 2008 <doi:10.1016/j.icrp.2008.10.004> <https://www.icrp.org/publication.asp?id=ICRP%20Publication%20107>. This is a database of the physical data needed in calculations of radionuclide-specific protection and operational quantities. The data is prescribed by the ICRP, the international authority on radiation dose standards, for estimating dose from the intake of or exposure to radionuclides in the workplace and the environment. The database contains information on the half-lives, decay chains, and yields and energies of radiations emitted in nuclear transformations of 1252 radionuclides of 97 elements.
We rewrite of RAMpath software developed by John McArdle
and Steven Boker as an R package. In addition to performing regular SEM analysis through the R package lavaan, RAMpath has unique features. First, it can generate path diagrams according to a given model. Second, it can display path tracing rules through path diagrams and decompose total effects into their respective direct and indirect effects as well as decompose variance and covariance into individual bridges. Furthermore, RAMpath can fit dynamic system models automatically based on latent change scores and generate vector field plots based upon results obtained from a bivariate dynamic system. Starting version 0.4, RAMpath can conduct power analysis for both univariate and bivariate latent change score models.
This package provides functions to accompany the book "Applied Statistical Modeling for Ecologists" by Marc Kéry and Kenneth F. Kellner (2024, ISBN: 9780443137150). Included are functions for simulating and customizing the datasets used for the example models in each chapter, summarizing output from model fitting engines, and running custom Markov Chain Monte Carlo.
Perceptually uniform palettes for commonly used variables in oceanography as functions taking an integer and producing character vectors of colours. See Thyng, K.M., Greene, C.A., Hetland, R.D., Zimmerle, H.M. and S.F. DiMarco
(2016) <doi:10.5670/oceanog.2016.66> for the guidelines adhered to when creating the palettes.
Using the idea of least trimmed square, it could automatically detects and removes outliers from data before estimating the coefficients. It is a robust machine learning tool which can be applied to gene-expression deconvolution technique. Yuning Hao, Ming Yan, Blake R. Heath, Yu L. Lei and Yuying Xie (2019) <doi:10.1101/358366>.
Compute energy fluxes in trophic networks, from resources to their consumers, and can be applied to systems ranging from simple two-species interactions to highly complex food webs. It implements the approach described in Gauzens et al. (2017) <doi:10.1101/229450> to calculate energy fluxes, which are also used to calculate equilibrium stability.
This package implements the AdaptiveImpute
matrix completion algorithm of Intelligent Initialization and Adaptive Thresholding for Iterative Matrix Completion', <https://amstat.tandfonline.com/doi/abs/10.1080/10618600.2018.1518238>. AdaptiveImpute
is useful for embedding sparsely observed matrices, often out performs competing matrix completion algorithms, and self-tunes its hyperparameter, making usage easy.