This package provides a multi-platform user interface for drawing highly customizable graphs in R. It aims to be a valuable help to quickly draw publishable graphs without any knowledge of R commands. Six kinds of graph are available: histogram, box-and-whisker plot, bar plot, pie chart, curve and scatter plot.
This package provides functions for estimating a GARCHSK model and GJRSK model based on a publication by Leon et,al (2005)<doi:10.1016/j.qref.2004.12.020> and Nakagawa and Uchiyama (2020)<doi:10.3390/math8111990>. These are a GARCH-type model allowing for time-varying volatility, skewness and kurtosis.
We implement two main functions. The first function uses a given grouped and/or right-censored grouping scheme and empirical data to infer parameters, and implements chi-square goodness-of-fit tests. The second function searches for the global optimal grouping scheme of grouped and/or right-censored count responses in surveys.
"Lessons in Statistical Thinking" D.T. Kaplan (2014) <https://dtkaplan.github.io/Lessons-in-statistical-thinking/> is a textbook for a first or second course in statistics that embraces data wrangling, causal reasoning, modeling, statistical adjustment, and simulation. LSTbook supports the student-centered, tidy, pipeline-oriented computing style featured in the book.
R Client for the Microsoft Cognitive Services Text-to-Speech REST API, including voice synthesis. A valid account must be registered at the Microsoft Cognitive Services website <https://azure.microsoft.com/services/cognitive-services/> in order to obtain a (free) API key. Without an API key, this package will not work properly.
This package provides a collection of functions for conducting meta-analysis using a structural equation modeling (SEM) approach via the OpenMx
and lavaan packages. It also implements various procedures to perform meta-analytic structural equation modeling on the correlation and covariance matrices, see Cheung (2015) <doi:10.3389/fpsyg.2014.01521>.
Measure quality of your tests. muttest introduces small changes (mutations) to your code and runs your tests to check if they catch the changes. If they do, your tests are good. If not, your assertions are not specific enough. muttest gives you percent score of how often your tests catch the changes.
Near-far matching is a study design technique for preprocessing observational data to mimic a pair-randomized trial. Individuals are matched to be near on measured confounders and far on levels of an instrumental variable. Methods outlined in further detail in Rigdon, Baiocchi, and Basu (2018) <doi:10.18637/jss.v086.c05>.
Two-sample power-enhanced mean tests, covariance tests, and simultaneous tests on mean vectors and covariance matrices for high-dimensional data. Methods of these PE tests are presented in Yu, Li, and Xue (2022) <doi:10.1080/01621459.2022.2126781>; Yu, Li, Xue, and Li (2022) <doi:10.1080/01621459.2022.2061354>.
Efficient algorithm for solving PU (Positive and Unlabeled) problem in low or high dimensional setting with lasso or group lasso penalty. The algorithm uses Maximization-Minorization and (block) coordinate descent. Sparse calculation and parallel computing are supported for the computational speed-up. See Hyebin Song, Garvesh Raskutti (2018) <arXiv:1711.08129>
.
This package provides a collection of software provides R support for ADMB (Automatic Differentiation Model Builder) and a GUI interface facilitates the conversion of ADMB template code to C code followed by compilation to a binary executable. Stand-alone functions can also be run by users not interested in clicking a GUI'.
This package provides a collection of Radix Tree and Trie algorithms for finding similar sequences and calculating sequence distances (Levenshtein and other distance metrics). This work was inspired by a trie implementation in Python: "Fast and Easy Levenshtein distance using a Trie." Hanov (2011) <https://stevehanov.ca/blog/index.php?id=114>.
This package provides a pipeline for estimating the stellar age, mass, and radius given observational effective temperature, [Fe/H], and astroseismic parameters. The results are obtained adopting a maximum likelihood technique over a grid of pre-computed stellar models, as described in Valle et al. (2014) <doi:10.1051/0004-6361/201322210>.
Detects spatial and temporal groups in GPS relocations (Robitaille et al. (2019) <doi:10.1111/2041-210X.13215>). It can be used to convert GPS relocations to gambit-of-the-group format to build proximity-based social networks In addition, the randomizations function provides data-stream randomization methods suitable for GPS data.
This package implements the SPCAvRP
algorithm, developed and analysed in "Sparse principal component analysis via random projections" Gataric, M., Wang, T. and Samworth, R. J. (2018) <arXiv:1712.05630>
. The algorithm is based on the aggregation of eigenvector information from carefully-selected random projections of the sample covariance matrix.
Goodness of Fit and Forecast Evaluation Tests for timeseries models. Includes, among others, the Generalized Method of Moments (GMM) Orthogonality Test of Hansen (1982), the Nyblom (1989) parameter constancy test, the sign-bias test of Engle and Ng (1993), and a range of tests for value at risk and expected shortfall evaluation.
Recursive partitioning for varying coefficient generalized linear models and ordinal linear mixed models. Special features are coefficient-wise partitioning, non-varying coefficients and partitioning of time-varying variables in longitudinal regression. A description of a part of this package was published by Burgin and Ritschard (2017) <doi:10.18637/jss.v080.i06>.
This package performs ratio, GC content correction and normalization of data obtained using low coverage (one read every 100-10,000 bp) high troughput sequencing. It performs a "discrete" normalization looking for the ploidy of the genome. It will also provide tumour content if at least two ploidy states can be found.
CluMSID
is a tool that aids the identification of features in untargeted LC-MS/MS analysis by the use of MS2 spectra similarity and unsupervised statistical methods. It offers functions for a complete and customisable workflow from raw data to visualisations and is interfaceable with the xmcs family of preprocessing packages.
GCAT is an association test for genome wide association studies that controls for population structure under a general class of trait models. This test conditions on the trait, which makes it immune to confounding by unmodeled environmental factors. Population structure is modeled via logistic factors, which are estimated using the `lfa` package.
This package provides large-scale single-cell omics data manipulation using Genomic Data Structure (GDS) files. It combines dense and sparse matrices stored in GDS files and the Bioconductor infrastructure framework (SingleCellExperiment
and DelayedArray
) to provide out-of-memory data storage and large-scale manipulation using the R programming language.
The PSMatch package helps proteomics practitioners to load, handle and manage peptide spectrum matches. It provides functions to model peptide-protein relations as adjacency matrices and connected components, visualise these as graphs and make informed decision about shared peptide filtering. The package also provides functions to calculate and visualise MS2 fragment ions.
This package provides a function to format R source code. Spaces and indent will be added to the code automatically, and comments will be preserved under certain conditions, so that R code will be more human-readable and tidy. There is also a Shiny app as a user interface in this package.
This package offers features plots for mlr3 objects such as tasks, learners, predictions, benchmark results, tuning instances and filters via the autoplot()
generic of ggplot2. The mlr3viz package draws plots with the viridis color palette and applies the minimal theme. Visualizations include barplots, boxplots, histograms, ROC curves, and precision-recall curves.