PathNet uses topological information present in pathways and differential expression levels of genes (obtained from microarray experiment) to identify pathways that are 1) significantly enriched and 2) associated with each other in the context of differential expression. The algorithm is described in: PathNet: A tool for pathway analysis using topological information. Dutta B, Wallqvist A, and Reifman J. Source Code for Biology and Medicine 2012 Sep 24;7(1):10.
Like all gene expression data, single-cell data suffers from batch effects and other unwanted variations that makes accurate biological interpretations difficult. The scMerge method leverages factor analysis, stably expressed genes (SEGs) and (pseudo-) replicates to remove unwanted variations and merge multiple single-cell data. This package contains all the necessary functions in the scMerge pipeline, including the identification of SEGs, replication-identification methods, and merging of single-cell data.
The NGS (Next-Generation Sequencing) reads from FFPE (Formalin-Fixed Paraffin-Embedded) samples contain numerous artifact chimeric reads (ACRS), which can lead to false positive structural variant calls. These ACRs are derived from the combination of two single-stranded DNA (ss-DNA) fragments with short reverse complementary regions (SRCRs). This package simulates these artifact chimeric reads as well as normal reads for FFPE samples on the whole genome / several chromosomes / large regions.
The package ABarray is designed to work with Applied Biosystems whole genome microarray platform, as well as any other platform whose data can be transformed into expression data matrix. Functions include data preprocessing, filtering, control probe analysis, statistical analysis in one single function. A graphical user interface (GUI) is also provided. The raw data, processed data, graphics output and statistical results are organized into folders according to the analysis settings used.
Monocle performs differential expression and time-series analysis for single-cell expression experiments. It orders individual cells according to progress through a biological process, without knowing ahead of time which genes define progress through that process. Monocle also performs differential expression analysis, clustering, visualization, and other useful tasks on single cell expression data. It is designed to work with RNA-Seq and qPCR data, but could be used with other types as well.
This package implements a variety of methods for combining p-values in differential analyses of genome-scale datasets. Functions can combine p-values across different tests in the same analysis (e.g., genomic windows in ChIP-seq, exons in RNA-seq) or for corresponding tests across separate analyses (e.g., replicated comparisons, effect of different treatment conditions). Support is provided for handling log-transformed input p-values, missing values and weighting where appropriate.
This package provides tools for defining recurrence rules and recurrence sets. Recurrence rules are a programmatic way to define a recurring event, like the first Monday of December. Multiple recurrence rules can be combined into larger recurrence sets. A full holiday and calendar interface is also provided that can generate holidays within a particular year, can detect if a date is a holiday, can respect holiday observance rules, and allows for custom holidays.
As heavy-tailed error distribution and outliers in the response variable widely exist, models which are robust to data contamination are highly demanded. Here, we develop a novel robust Bayesian variable selection method with elastic net penalty. In particular, the spike-and-slab priors have been incorporated to impose sparsity. An efficient Gibbs sampler has been developed to facilitate computation.The core modules of the package have been developed in C++ and R.
Estimate population average treatment effects from a primary data source with borrowing from supplemental sources. Causal estimation is done with either a Bayesian linear model or with Bayesian additive regression trees (BART) to adjust for confounding. Borrowing is done with multisource exchangeability models (MEMs). For information on BART, see Chipman, George, & McCulloch (2010) <doi:10.1214/09-AOAS285>. For information on MEMs, see Kaizer, Koopmeiners, & Hobbs (2018) <doi:10.1093/biostatistics/kxx031>.
This package provides a Bayesian meta-analysis method for studying cross-phenotype genetic associations. It uses summary-level data across multiple phenotypes to simultaneously measure the evidence of aggregate-level pleiotropic association and estimate an optimal subset of traits associated with the risk locus. CPBayes is based on a spike and slab prior. The methodology is available from: A Majumdar, T Haldar, S Bhattacharya, JS Witte (2018) <doi:10.1371/journal.pgen.1007139>.
The CalMaTe method calibrates preprocessed allele-specific copy number estimates (ASCNs) from DNA microarrays by controlling for single-nucleotide polymorphism-specific allelic crosstalk. The resulting ASCNs are on average more accurate, which increases the power of segmentation methods for detecting changes between copy number states in tumor studies including copy neutral loss of heterozygosity. CalMaTe applies to any ASCNs regardless of preprocessing method and microarray technology, e.g. Affymetrix and Illumina.
An open, multi-algorithmic pipeline for easy, fast and efficient analysis of cellular sub-populations and the molecular signatures that characterize them. The pipeline consists of four successive steps: data pre-processing, cellular clustering with pseudo-temporal ordering, defining differential expressed genes and biomarker identification. More details on Ghannoum et. al. (2021) <doi:10.3390/ijms22031399>. This package implements extensions of the work published by Ghannoum et. al. (2019) <doi:10.1101/700989>.
Makes the Genepop software available in R. This software implements a mixture of traditional population genetic methods and some more focused developments: it computes exact tests for Hardy-Weinberg equilibrium, for population differentiation and for genotypic disequilibrium among pairs of loci; it computes estimates of F-statistics, null allele frequencies, allele size-based statistics for microsatellites, etc.; and it performs analyses of isolation by distance from pairwise comparisons of individuals or population samples.
Perform high dimensional Feature Selection in the presence of survival outcome. Based on Feature Selection method and different survival analysis, it will obtain the best markers with optimal threshold levels according to their effect on disease progression and produce the most consistent level according to those threshold values. The functions methodology is based on by Sonabend et al (2021) <doi:10.1093/bioinformatics/btab039> and Bhattacharjee et al (2021) <arXiv:2012.02102>.
Providing mean partition for ensemble clustering by optimal transport alignment(OTA), uncertainty measures for both partition-wise and cluster-wise assessment and multiple visualization functions to show uncertainty, for instance, membership heat map and plot of covering point set. A partition refers to an overall clustering result. Jia Li, Beomseok Seo, and Lin Lin (2019) <doi:10.1002/sam.11418>. Lixiang Zhang, Lin Lin, and Jia Li (2020) <doi:10.1093/bioinformatics/btaa165>.
An environment to simulate the development of annual plant populations with regard to population dynamics and genetics, especially herbicide resistance. It combines genetics on the individual level (Renton et al. 2011) with a stochastic development on the population level (Daedlow, 2015). Renton, M, Diggle, A, Manalil, S and Powles, S (2011) <doi:10.1016/j.jtbi.2011.05.010> Daedlow, Daniel (2015, doctoral dissertation: University of Rostock, Faculty of Agriculture and Environmental Sciences.).
Estimating causal effects in the presence of post-treatment confounding using principal stratification. PStrata allows for customized monotonicity assumptions and exclusion restriction assumptions, with automatic full Bayesian inference supported by Stan'. The main function to use in this package is PStrata(), which provides posterior estimates of principal causal effect with uncertainty quantification. Visualization tools are also provided for diagnosis and interpretation. See Liu and Li (2023) <arXiv:2304.02740> for details.
This package provides functions for estimating ploidy levels and detecting aneuploidy in individuals using allele intensities or allele count data from high-throughput genotyping platforms, including single nucleotide polymorphism (SNP) arrays and sequencing-based technologies. Implements an extended version of the PennCNV signal standardization method by Wang et al. (2007) <doi:10.1101/gr.6861907> for higher ploidy levels. Computes B-allele frequencies (BAF), z-scores, and identifies copy number variation patterns.
This package provides some code to run simulations of state-space models, and then use these in the Approximate Bayesian Computation Sequential Monte Carlo (ABC-SMC) algorithm of Toni et al. (2009) <doi:10.1098/rsif.2008.0172> and a bootstrap particle filter based particle Markov chain Monte Carlo (PMCMC) algorithm (Andrieu et al., 2010 <doi:10.1111/j.1467-9868.2009.00736.x>). Also provides functions to plot and summarise the outputs.
Fit, summarize, and predict for a variety of spatial statistical models applied to point-referenced and areal (lattice) data. Parameters are estimated using various methods. Additional modeling features include anisotropy, non-spatial random effects, partition factors, big data approaches, and more. Model-fit statistics are used to summarize, visualize, and compare models. Predictions at unobserved locations are readily obtainable. For additional details, see Dumelle et al. (2023) <doi:10.1371/journal.pone.0282524>.
Newly developed methods for the estimation of several probabilities in an illness-death model. The package can be used to obtain nonparametric and semiparametric estimates for: transition probabilities, occupation probabilities, cumulative incidence function and the sojourn time distributions. Additionally, it is possible to fit proportional hazards regression models in each transition of the Illness-Death Model. Several auxiliary functions are also provided which can be used for marginal estimation of the survival functions.
Utility functions for scale-dependent and alternative hyperpriors. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. Hyperpriors for all effects can be elicitated within the package. Including complex tensor product interaction terms and variable selection priors. The basic model is explained in in Klein and Kneib (2016) <doi:10.1214/15-BA983>.
This package provides functions to create and manage research compendiums for data analysis. Research compendiums are a standard and intuitive folder structure for organizing the digital materials of a research project, which can significantly improve reproducibility. The package offers several compendium structure options that fit different research project as well as the ability of duplicating the folder structure of existing projects or implementing custom structures. It also simplifies the use of version control.
This package provides a collection of functions to deal with spatial and spatiotemporal autoregressive conditional heteroscedasticity (spatial ARCH and GARCH models) by Otto, Schmid, Garthoff (2018, Spatial Statistics) <doi:10.1016/j.spasta.2018.07.005>: simulation of spatial ARCH-type processes (spARCH, log/exponential-spARCH, complex-spARCH); quasi-maximum-likelihood estimation of the parameters of spARCH models and spatial autoregressive models with spARCH disturbances, diagnostic checks, visualizations.