Unifying an inconsistently coded categorical variable between two different time points in accordance with a mapping table. The main rule is to replicate the observation if it could be assigned to a few categories. Then using frequencies or statistical methods to approximate the probabilities of being assigned to each of them. This procedure was invented and implemented in the paper by Nasinski, Majchrowska, and Broniatowska (2020) <doi:10.24425/cejeme.2020.134747>.
It is an open source insurance claim simulation engine sponsored by the Casualty Actuarial Society. It generates individual insurance claims including open claims, reopened claims, incurred but not reported claims and future claims. It also includes claim data fitting functions to help set simulation assumptions. It is useful for claim level reserving analysis. Parodi (2013) <https://www.actuaries.org.uk/documents/triangle-free-reserving-non-traditional-framework-estimating-reserves-and-reserve-uncertainty>.
This package provides constructions of series of partially balanced incomplete block designs (PBIB) based on the combinatory method S, introduced by Rezgui et al. (2014) <doi:10.3844/jmssp.2014.45.48>. This package also offers the associated U-type designs. Version 1.1-1 generalizes the approach to designs with v = wnl treatments. It includes various rectangular and generalized rectangular right angular association schemes with 4, 5, and 7 associated classes.
This package provides methods of computerized adaptive testing for survey researchers. See Montgomery and Rossiter (2020) <doi:10.1093/jssam/smz027>. Includes functionality for data fit with the classic item response methods including the latent trait model, the Birnbaum three parameter model, the graded response, and the generalized partial credit model. Additionally, includes several ability parameter estimation and item selection routines. During item selection, all calculations are done in compiled C++ code.
Bindings for additional classification models for use with the parsnip package. Models include flavors of discriminant analysis, such as linear (Fisher (1936) <doi:10.1111/j.1469-1809.1936.tb02137.x>), regularized (Friedman (1989) <doi:10.1080/01621459.1989.10478752>), and flexible (Hastie, Tibshirani, and Buja (1994) <doi:10.1080/01621459.1994.10476866>), as well as naive Bayes classifiers (Hand and Yu (2007) <doi:10.1111/j.1751-5823.2001.tb00465.x>).
Figures, data sets and examples from the book "A practical guide to ecological modelling - using R as a simulation platform" by Karline Soetaert and Peter MJ Herman (2009). Springer. All figures from chapter x can be generated by "demo(chapx)", where x = 1 to 11. The R-scripts of the model examples discussed in the book are in subdirectory "examples", ordered per chapter. Solutions to model projects are in the same subdirectories.
Computational representations of glycan compositions and structures, including details such as linkages, anomers, and substituents. Supports varying levels of monosaccharide specificity (e.g., "Hex" or "Gal") and ambiguous linkages. Provides robust parsing and generation of IUPAC-condensed structure strings. Optimized for vectorized operations on glycan structures, with efficient handling of duplications. As the cornerstone of the glycoverse ecosystem, this package delivers the foundational data structures that power glycomics and glycoproteomics analysis workflows.
This package implements transfer learning methods for low-rank matrix estimation. These methods leverage similarity in the latent row and column spaces between the source and target populations to improve estimation in the target population. The methods include the LatEnt spAce-based tRaNsfer lEaRning (LEARNER) method and the direct projection LEARNER (D-LEARNER) method described by McGrath et al. (2024) <doi:10.48550/arXiv.2412.20605>.
This package provides functions for fitting a functional principal components logit regression model in four different situations: ordinary and filtered functional principal components of functional predictors, included in the model according to their variability explanation power, and according to their prediction ability by stepwise methods. The proposed methods were developed in Escabias et al (2004) <doi:10.1080/10485250310001624738> and Escabias et al (2005) <doi:10.1016/j.csda.2005.03.011>.
Fits multivariate (Brownian Motion, Early Burst, ACDC, Ornstein-Uhlenbeck and Shifts) models of continuous traits evolution on trees and time series. mvMORPH also proposes high-dimensional multivariate comparative tools (linear models using Generalized Least Squares and multivariate tests) based on penalized likelihood. See Clavel et al. (2015) <DOI:10.1111/2041-210X.12420>, Clavel et al. (2019) <DOI:10.1093/sysbio/syy045>, and Clavel & Morlon (2020) <DOI:10.1093/sysbio/syaa010>.
Measure productivity and efficiency using Data Envelopment Analysis (DEA). Available methods include DEA under different technology assumptions, bootstrapping of efficiency scores and calculation of the Malmquist productivity index. Analyses can be performed either in the console or with the provided shiny app. See Banker, R.; Charnes, A.; Cooper, W.W. (1984) <doi:10.1287/mnsc.30.9.1078>, Färe, R.; Grosskopf, S. (1996) <doi:10.1007/978-94-009-1816-0>.
Spatiotemporal individual-level model of seasonal infectious disease transmission within the Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) framework are applied to model seasonal infectious disease transmission. This package employs a likelihood based Monte Carlo Expectation Conditional Maximization (MCECM) algorithm for estimating model parameters. In addition to model fitting and parameter estimation, the package offers functions for calculating AIC using real pandemic data and conducting simulation studies customized to user-specified model configurations.
This package provides a toolkit of tidy data manipulation verbs with data.table as the backend. Combining the merits of syntax elegance from dplyr and computing performance from data.table', tidyfst intends to provide users with state-of-the-art data manipulation tools with least pain. This package is an extension of data.table'. While enjoying a tidy syntax, it also wraps combinations of efficient functions to facilitate frequently-used data operations.
This package provides a variety of tools to allow the quantification of videos of the lymphatic vasculature taken under an operating microscope. Lymphatic vessels that have been injected with a variety of blue dyes can be tracked throughout the video to determine their width over time. Code is optimised for efficient processing of multiple large video files. Functions to calculate physiologically relevant parameters and generate graphs from these values are also included.
The airpart package identifies sets of genes displaying differential cell-type-specific allelic imbalance across cell types or states, utilizing single-cell allelic counts. It makes use of a generalized fused lasso with binomial observations of allelic counts to partition cell types by their allelic imbalance. Alternatively, a nonparametric method for partitioning cell types is offered. The package includes a number of visualizations and quality control functions for examining single cell allelic imbalance datasets.
This package allows for fast, correct, consistent, portable, as well as convenient character string/text processing in every locale and any native encoding. Owing to the use of the ICU library, the package provides R users with platform-independent functions known to Java, Perl, Python, PHP, and Ruby programmers. Among available features there are: pattern searching (e.g. via regular expressions), random string generation, string collation, transliteration, concatenation, date-time formatting and parsing, etc.
This package contains procedures for depth-based supervised learning, which are entirely non-parametric, in particular the DDalpha-procedure (Lange, Mosler and Mozharovskyi, 2014). The training data sample is transformed by a statistical depth function to a compact low-dimensional space, where the final classification is done. It also offers an extension to functional data and routines for calculating certain notions of statistical depth functions. 50 multivariate and 5 functional classification problems are included.
This package is a port of the new http://matplotlib.org/ color maps (viridis--the default--, magma, plasma, and inferno) to R. These color maps are designed in such a way that they will analytically be perfectly perceptually-uniform, both in regular form and also when converted to black-and-white. They are also designed to be perceived by readers with the most common form of color blindness.
This package provides a collection of R functions to perform nonparametric analysis of covariance for regression curves or surfaces. Testing the equality or parallelism of nonparametric curves or surfaces is equivalent to analysis of variance (ANOVA) or analysis of covariance (ANCOVA) for one-sample functional data. Three different testing methods are available in the package, including one based on L-2 distance, one based on an ANOVA statistic, and one based on variance estimators.
This package helps identify mRNAs that are overexpressed in subsets of tumors relative to normal tissue. Ideal inputs would be paired tumor-normal data from the same tissue from many patients (>15 pairs). This unsupervised approach relies on the observation that oncogenes are characteristically overexpressed in only a subset of tumors in the population, and may help identify oncogene candidates purely based on differences in mRNA expression between previously unknown subtypes.
Offers functions for plotting split (or implicit) networks (unrooted, undirected) and explicit networks (rooted, directed) with reticulations extending. ggtree and using functions from ape and phangorn'. It extends the ggtree package [@Yu2017] to allow the visualization of phylogenetic networks using the ggplot2 syntax. It offers an alternative to the plot functions already available in ape Paradis and Schliep (2019) <doi:10.1093/bioinformatics/bty633> and phangorn Schliep (2011) <doi:10.1093/bioinformatics/btq706>.
This package provides tools for defining recurrence rules and recurrence sets. Recurrence rules are a programmatic way to define a recurring event, like the first Monday of December. Multiple recurrence rules can be combined into larger recurrence sets. A full holiday and calendar interface is also provided that can generate holidays within a particular year, can detect if a date is a holiday, can respect holiday observance rules, and allows for custom holidays.
Estimate population average treatment effects from a primary data source with borrowing from supplemental sources. Causal estimation is done with either a Bayesian linear model or with Bayesian additive regression trees (BART) to adjust for confounding. Borrowing is done with multisource exchangeability models (MEMs). For information on BART, see Chipman, George, & McCulloch (2010) <doi:10.1214/09-AOAS285>. For information on MEMs, see Kaizer, Koopmeiners, & Hobbs (2018) <doi:10.1093/biostatistics/kxx031>.
As heavy-tailed error distribution and outliers in the response variable widely exist, models which are robust to data contamination are highly demanded. Here, we develop a novel robust Bayesian variable selection method with elastic net penalty. In particular, the spike-and-slab priors have been incorporated to impose sparsity. An efficient Gibbs sampler has been developed to facilitate computation.The core modules of the package have been developed in C++ and R.