Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Process results generated by Antares', a powerful open source software developed by RTE (Réseau de Transport dâ à lectricité) to simulate and study electric power systems (more information about Antares here: <https://github.com/AntaresSimulatorTeam/Antares_Simulator>). This package provides functions to create new columns like net load, load factors, upward and downward margins or to compute aggregated statistics like economic surpluses of consumers, producers and sectors.
The Algorithms for Quantitative Pedology (AQP) project was started in 2009 to organize a loosely-related set of concepts and source code on the topic of soil profile visualization, aggregation, and classification into this package (aqp). Over the past 8 years, the project has grown into a suite of related R packages that enhance and simplify the quantitative analysis of soil profile data. Central to the AQP project is a new vocabulary of specialized functions and data structures that can accommodate the inherent complexity of soil profile information; freeing the scientist to focus on ideas rather than boilerplate data processing tasks <doi:10.1016/j.cageo.2012.10.020>. These functions and data structures have been extensively tested and documented, applied to projects involving hundreds of thousands of soil profiles, and deeply integrated into widely used tools such as SoilWeb <https://casoilresource.lawr.ucdavis.edu/soilweb-apps>. Components of the AQP project (aqp, soilDB, sharpshootR, soilReports packages) serve an important role in routine data analysis within the USDA-NRCS Soil Science Division. The AQP suite of R packages offer a convenient platform for bridging the gap between pedometric theory and practice.
This package implements adaptive gPCA, as described in: Fukuyama, J. (2017) <arXiv:1702.00501>. The package also includes functionality for applying the method to phyloseq objects so that the method can be easily applied to microbiome data and a shiny app for interactive visualization.
Perform first- and second-order multi-scale analyses derived from Ripley K-function (Ripley B. D. (1977) <doi:10.1111/j.2517-6161.1977.tb01615.x>), for univariate, multivariate and marked mapped data in rectangular, circular or irregular shaped sampling windows, with tests of statistical significance based on Monte Carlo simulations.
Increasingly powerful techniques for high-throughput sequencing open the possibility to comprehensively characterize microbial communities, including rare species. However, a still unresolved issue are the substantial error rates in the experimental process generating these sequences. To overcome these limitations we propose an approach, where each sample is split and the same amplification and sequencing protocol is applied to both halves. This procedure should allow to detect likely PCR and sequencing artifacts, and true rare species by comparison of the results of both parts. The AmpliconDuo package, whereas amplicon duo from here on refers to the two amplicon data sets of a split sample, is intended to help interpret the obtained read frequency distribution across split samples, and to filter the false positive reads.
An R Shiny application for visual and statistical exploration and web communication of archaeological spatial data, either remains or sites. It offers interactive 3D and 2D visualisations (cross sections and maps of remains, timeline of the work made in a site) which can be exported in SVG and HTML formats. It performs simple spatial statistics (convex hull, regression surfaces, 2D kernel density estimation) and allows exporting data to other online applications for more complex methods. archeoViz can be used offline locally or deployed on a server, either with interactive input of data or with a static data set. Example is provided at <https://analytics.huma-num.fr/archeoviz/en>.
This package provides a wrapper for ada-url', a WHATWG compliant and fast URL parser written in modern C++'. Also contains auxiliary functions such as a public suffix extractor.
This package provides a function that implements the acceptance-rejection method in an optimized manner to generate pseudo-random observations for discrete or continuous random variables. Proposed by von Neumann J. (1951), <https://mcnp.lanl.gov/pdf_files/>, the function is optimized to work in parallel on Unix-based operating systems and performs well on Windows systems. The acceptance-rejection method implemented optimizes the probability of generating observations from the desired random variable, by simply providing the probability function or probability density function, in the discrete and continuous cases, respectively. Implementation is based on references CASELLA, George at al. (2004) <https://www.jstor.org/stable/4356322>, NEAL, Radford M. (2003) <https://www.jstor.org/stable/3448413> and Bishop, Christopher M. (2006, ISBN: 978-0387310732).
This package implements a web-based graphics device for animated visualisations. Modelled on the base syntax, it extends the base graphics functions to support frame-by-frame animation and keyframes animation. The target use cases are real-time animated visualisations, including agent-based models, dynamical systems, and animated diagrams. The generated visualisations can be deployed as GIF images / MP4 videos, as Shiny apps (with interactivity) or as HTML documents through embedding into R Markdown documents.
Randomly splits data into testing and training sets. Then, uses stepwise selection to fit numerous multiple regression models on the training data, and tests them on the test data. Returned for each model are plots comparing model Akaike Information Criterion (AIC), Pearson correlation coefficient (r) between the predicted and actual values, Mean Absolute Error (MAE), and R-Squared among the models. Each model is ranked relative to the other models by the model evaluation metrics (i.e., AIC, r, MAE, and R-Squared) and the model with the best mean ranking among the model evaluation metrics is returned. Model evaluation metric weights for AIC, r, MAE, and R-Squared are taken in as arguments as aic_wt, r_wt, mae_wt, and r_squ_wt, respectively. They are equally weighted as default but may be adjusted relative to each other if the user prefers one or more metrics to the others, Field, A. (2013, ISBN:978-1-4462-4918-5).
Adaptive smoothing functions for estimating the blood oxygenation level dependent (BOLD) effect by using functional Magnetic Resonance Imaging (fMRI) data, based on adaptive Gauss Markov random fields, for real as well as simulated data. The implemented models make use of efficient Markov Chain Monte Carlo methods. Implemented methods are based on the research developed by A. Brezger, L. Fahrmeir, A. Hennerfeind (2007) <https://www.jstor.org/stable/4626770>.
Enables sampling from arbitrary distributions if the log density is known up to a constant; a common situation in the context of Bayesian inference. The implemented sampling algorithm was proposed by Vihola (2012) <DOI:10.1007/s11222-011-9269-5> and achieves often a high efficiency by tuning the proposal distributions to a user defined acceptance rate.
This package performs Bayesian prediction of complex computer codes when fast approximations are available. It uses a hierarchical version of the Gaussian process, originally proposed by Kennedy and O'Hagan (2000), Biometrika 87(1):1.
We developed a lightweight machine learning tool for RNA profiling of acute lymphoblastic leukemia (ALL), however, it can be used for any problem where multiple classes need to be identified from multi-dimensional data. The methodology is described in Makinen V-P, Rehn J, Breen J, Yeung D, White DL (2022) Multi-cohort transcriptomic subtyping of B-cell acute lymphoblastic leukemia, International Journal of Molecular Sciences 23:4574, <doi:10.3390/ijms23094574>. The classifier contains optimized mean profiles of the classes (centroids) as observed in the training data, and new samples are matched to these centroids using the shortest Euclidean distance. Centroids derived from a dataset of 1,598 ALL patients are included, but users can train the models with their own data as well. The output includes both numerical and visual presentations of the classification results. Samples with mixed features from multiple classes or atypical values are also identified.
Penalized variable selection tools for the Cox proportional hazards model with interval censored and possibly left truncated data. It performs variable selection via penalized nonparametric maximum likelihood estimation with an adaptive lasso penalty. The optimal thresholding parameter can be searched by the package based on the profile Bayesian information criterion (BIC). The asymptotic validity of the methodology is established in Li et al. (2019 <doi:10.1177/0962280219856238>). The unpenalized nonparametric maximum likelihood estimation for interval censored and possibly left truncated data is also available.
Two unordered pairs of data of two different snips positions is haplotyped by resolving a small number ob closed equations.
Estimate and plot confounder-adjusted survival curves using either Direct Adjustment', Direct Adjustment with Pseudo-Values', various forms of Inverse Probability of Treatment Weighting', two forms of Augmented Inverse Probability of Treatment Weighting', Empirical Likelihood Estimation or Targeted Maximum Likelihood Estimation'. Also includes a significance test for the difference between two adjusted survival curves and the calculation of adjusted restricted mean survival times. Additionally enables the user to estimate and plot cause-specific confounder-adjusted cumulative incidence functions in the competing risks setting using the same methods (with some exceptions). For details, see Denz et. al (2023) <doi:10.1002/sim.9681>.
This package provides a Python based pipeline for extraction of species occurrence data through the usage of large language models. Includes validation tools designed to handle model hallucinations for a scientific, rigorous use of LLM. Currently supports usage of GPT with more planned, including local and non-proprietary models. For more details on the methodology used please consult the references listed under each function, such as Kent, A. et al. (1995) <doi:10.1002/asi.5090060209>, van Rijsbergen, C.J. (1979, ISBN:978-0408709293, Levenshtein, V.I. (1966) <https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf> and Klaus Krippendorff (2011) <https://repository.upenn.edu/handle/20.500.14332/2089>.
R and C++ functions to perform exact and approximate optimal transport. All C++ methods can be linked to other R packages via their header files.
Provide addins for RStudio'. It currently contains 3 addins. The first to add a shortcut for the double pipe. The second is to add a shortcut for the same operator. And the third to simplify the creation of vectors from texts pasted from the computer transfer area.
Multimodal distributions can be modelled as a mixture of components. The model is derived using the Pareto Density Estimation (PDE) for an estimation of the pdf. PDE has been designed in particular to identify groups/classes in a dataset. Precise limits for the classes can be calculated using the theorem of Bayes. Verification of the model is possible by QQ plot, Chi-squared test and Kolmogorov-Smirnov test. The package is based on the publication of Ultsch, A., Thrun, M.C., Hansen-Goos, O., Lotsch, J. (2015) <DOI:10.3390/ijms161025897>.
Made to make your life simpler with packages, by installing and loading a list of packages, whether they are on CRAN, Bioconductor or github. For github, if you do not have the full path, with the maintainer name in it (e.g. "achateigner/topReviGO"), it will be able to load it but not to install it.
This package provides tools for estimating length-based indicators from length frequency data to assess fish stock status and manage fisheries sustainably. Implements methods from Cope and Punt (2009) <doi:10.1577/C08-025.1> for data-limited stock assessment and Froese (2004) <doi:10.1111/j.1467-2979.2004.00144.x> for detecting overfishing using simple indicators. Key functions include: FrequencyTable(): Calculate the frequency table from the collected and also the extract the length frequency data from the frequency table with the upper length_range. A numeric value specifying the bin width for class intervals. If not provided, the bin width is automatically calculated using Sturges (1926) <doi:10.1080/01621459.1926.10502161> formula. CalPar(): Calculates various lengths used in fish stock assessment as biological length indicators such as asymptotic length (Linf), maximum length (Lmax), length at sexual maturity (Lm), and optimal length (Lopt). FishPar(): Calculates length-based indicators (LBIs) proposed by Froese (2004) <doi:10.1111/j.1467-2979.2004.00144.x> such as the percentage of mature fish (Pmat), percentage of optimal length fish (Popt), percentage of mega spawners (Pmega), and the sum of these as Pobj. This function also estimates confidence intervals for different lengths, visualizes length frequency distributions, and provides data frames containing calculated values. FishSS(): Makes decisions based on input from Cope and Punt (2009) <doi:10.1577/C08-025.1> and parameters calculated by FishPar() (e.g., Pobj, Pmat, Popt, LM_ratio) to determine stock status as target spawning biomass (TSB40) and limit spawning biomass (LSB25). LWR(): Fits and visualizes length-weight relationships using linear regression, with options for log-transformation and customizable plotting.
This package provides functions for generating and visualising networks for characterising the physical attributes and spatial organisations of habitat components (i.e. habitat physical configurations). The network generating algorithm first determines the X and Y coordinates of N nodes within a rectangle with a side length of L and an area of A. Then it computes the pair-wise Euclidean distance Dij between node i and j, and then a complete network with 1/Dij as link weights is constructed. Then, the algorithm removes links from the complete network with the probability as shown in the function ahn_prob(). Such link removals can make the network disconnected whereas a connected network is wanted. In such cases, the algorithm rewires one network component to its spatially nearest neighbouring component and repeat doing this until the network is connected again. Finally, it outputs an undirected network (weighted or unweighted, connected or disconnected). This package came with a manuscript on modelling the physical configurations of animal habitats using networks (in preparation).