Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Make summary tables for descriptive statistics and select explanatory variables automatically in various regression models. Support linear models, generalized linear models and cox-proportional hazard models. Generate publication-ready tables summarizing result of regression analysis and plots. The tables and plots can be exported in "HTML", "pdf('LaTex')", "docx('MS Word')" and "pptx('MS Powerpoint')" documents.
This package provides a decision support tool to strategically prioritise evidence gathering in complex, hierarchical AND-OR decision trees. It is designed for situations with incomplete or uncertain information where the goal is to reach a confident conclusion as efficiently as possible (responding to the minimum number of questions, and only spending resources on generating improved evidence when it is of significant value to the final decision). The framework excels in complex analyses with multiple potential successful pathways to a conclusion ('OR nodes). Key features include a dynamic influence index to guide users to the most impactful question, a system for propagating answers and semi-quantitative confidence scores (0-5) up the tree, and post-conclusion guidance to identify the best actions to increase the final confidence. These components are brought together in an interactive command-line workflow that guides the analysis from start to finish.
In order to make Arrow Database Connectivity ('ADBC <https://arrow.apache.org/adbc/>) accessible from R, an interface compliant with the DBI package is provided, using driver back-ends that are implemented in the adbcdrivermanager framework. This enables interacting with database systems using the Arrow data format, thereby offering an efficient alternative to ODBC for analytical applications.
Client package for the AWS Key Management Service <https://aws.amazon.com/kms/>, a cloud service for managing encryption keys.
This package provides algorithms to solve popular optimization problems in statistics such as regression or denoising based on Alternating Direction Method of Multipliers (ADMM). See Boyd et al (2010) <doi:10.1561/2200000016> for complete introduction to the method.
Perform one-dimensional spline regression with automatic knot selection. This package uses a penalized approach to select the most relevant knots. B-splines of any degree can be fitted. More details in Goepp et al. (2018)', "Spline Regression with Automatic Knot Selection", <arXiv:1808.01770>.
This package provides functions for the estimation of intra- and inter-cohort correlations in the Vasicek credit portfolio model. For intra-cohort correlations, the package covers the two method of moments estimators of Gordy (2000) <doi:10.1016/S0378-4266(99)00054-0>, the method of moments estimator of Lucas (1995) <https://jfi.pm-research.com/content/4/4/76> and a Binomial approximation extension of this approach. Moreover, the maximum likelihood estimators of Gordy and Heitfield (2010) <http://elsa.berkeley.edu/~mcfadden/e242_f03/heitfield.pdf> and Duellmann and Gehde-Trapp (2004) <http://hdl.handle.net/10419/19729> are implemented. For inter-cohort correlations, the method of moments estimator of Bluhm and Overbeck (2003) <doi:10.1007/978-3-642-59365-9_2>/Bams et al. (2016) <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2676595> is provided and the maximum likelihood estimators comprise the approaches of Gordy and Heitfield (2010)/Kalkbrener and Onwunta (2010) <ISBN: 978-1906348250> and Pfeuffer et al. (2020). Bootstrap and Jackknife procedures for bias correction are included as well as the method of moments estimator of Frei and Wunsch (2018) <doi:10.21314/JCR.2017.231> for auto-correlated time series.
This package provides a toolkit to predict antimicrobial peptides from protein sequences on a genome-wide scale. It incorporates two support vector machine models ("precursor" and "mature") trained on publicly available antimicrobial peptide data using calculated physico-chemical and compositional sequence properties described in Meher et al. (2017) <doi:10.1038/srep42362>. In order to support genome-wide analyses, these models are designed to accept any type of protein as input and calculation of compositional properties has been optimised for high-throughput use. For best results it is important to select the model that accurately represents your sequence type: for full length proteins, it is recommended to use the default "precursor" model. The alternative, "mature", model is best suited for mature peptide sequences that represent the final antimicrobial peptide sequence after post-translational processing. For details see Fingerhut et al. (2020) <doi:10.1093/bioinformatics/btaa653>. The ampir package is also available via a Shiny based GUI at <https://ampir.marine-omics.net/>.
Query the four endpoints of the Air and Water Database (AWDB) REST API maintained by the National Water and Climate Center (NWCC) at the United States Department of Agriculture (USDA). Endpoints include data, forecast, reference-data, and metadata. The package is extremely light weight, with Rust via extendr doing most of the heavy lifting to deserialize and flatten deeply nested JSON responses. The AWDB can be found at <https://wcc.sc.egov.usda.gov/awdbRestApi/swagger-ui/index.html>.
The goal of andurinha is provide a fast and friendly way to process spectroscopic data. It is intended for processing several spectra of samples with similar composition (tens to hundreds of spectra). It compiles spectroscopy data files, produces standardized and second derivative spectra, finds peaks and allows to select the most significant ones based on the second derivative/absorbance sum spectrum. It also provides functions for graphic evaluation of the outputs.
Computation of the alpha-shape and alpha-convex hull of a given sample of points in the plane. The concepts of alpha-shape and alpha-convex hull generalize the definition of the convex hull of a finite set of points. The programming is based on the duality between the Voronoi diagram and Delaunay triangulation. The package also includes a function that returns the Delaunay mesh of a given sample of points and its dual Voronoi diagram in one single object.
Nonparametric data-driven approach to discovering heterogeneous subgroups in a selection-on-observables framework. aggTrees allows researchers to assess whether there exists relevant heterogeneity in treatment effects by generating a sequence of optimal groupings, one for each level of granularity. For each grouping, we obtain point estimation and inference about the group average treatment effects. Please reference the use as Di Francesco (2022) <doi:10.2139/ssrn.4304256>.
Functionality to allow users to easily colour plots with the colour palettes of various academic institutions.
Considering an (n x m) data matrix X, this package is based on the method proposed by Gower, Groener, and Velden (2010) <doi:10.1198/jcgs.2010.07134>, and utilize the resulting matrices from the extended version of the NIPALS decomposition to determine n triangles whose areas are used to visually estimate the elements of a specific column of X. After a 90-degree rotation of the sample points, the triangles are drawn regarding the following points: 1.the origin of the axes; 2.the sample points; 3. the vector endpoint representing some variable.
This package implements the adaptive sampling procedure, a framework for both positive unlabeled learning and learning with class label noise. Yang, P., Ormerod, J., Liu, W., Ma, C., Zomaya, A., Yang, J. (2018) <doi:10.1109/TCYB.2018.2816984>.
Description: Computes maximum likelihood estimates of general, zero-inflated, and zero-altered models for discrete and continuous distributions. It also performs Kolmogorov-Smirnov (KS) tests and likelihood ratio tests for general, zero-inflated, and zero-altered data. Additionally, it obtains the inverse of the Fisher information matrix and confidence intervals for the parameters of general, zero-inflated, and zero-altered models. The package simulates random deviates from zero-inflated or hurdle models to obtain maximum likelihood estimates. Based on the work of Aldirawi et al. (2022) <doi:10.1007/s42519-021-00230-y> and Dousti Mousavi et al. (2023) <doi:10.1080/00949655.2023.2207020>.
Toolbox for the experimental aquatic chemist, focused on acidification and CO2 air-water exchange. It contains all elements to model the pH, the related CO2 air-water exchange, and aquatic acid-base chemistry for an arbitrary marine, estuarine or freshwater system. It contains a suite of tools for sensitivity analysis, visualisation, modelling of chemical batches, and can be used to build dynamic models of aquatic systems. As from version 1.0-4, it also contains functions to calculate the buffer factors.
The main application concerns to a new robust optimization package with two major contributions. The first contribution refers to the assessment of the adequacy of probabilistic models through a combination of several statistics, which measure the relative quality of statistical models for a given data set. The second one provides a general purpose optimization method based on meta-heuristics functions for maximizing or minimizing an arbitrary objective function.
Processes noble gas mass spectrometer data to determine the isotopic composition of argon (comprised of Ar36, Ar37, Ar38, Ar39 and Ar40) released from neutron-irradiated potassium-bearing minerals. Then uses these compositions to calculate precise and accurate geochronological ages for multiple samples as well as the covariances between them. Error propagation is done in matrix form, which jointly treats all samples and all isotopes simultaneously at every step of the data reduction process. Includes methods for regression of the time-resolved mass spectrometer signals to t=0 ('time zero') for both single- and multi-collector instruments, blank correction, mass fractionation correction, detector intercalibration, decay corrections, interference corrections, interpolation of the irradiation parameter between neutron fluence monitors, and (weighted mean) age calculation. All operations are performed on the logs of the ratios between the different argon isotopes so as to properly treat them as compositional data', sensu Aitchison [1986, The Statistics of Compositional Data, Chapman and Hall].
This package provides a set of functions to access the ARDECO (Annual Regional Database of the European Commission) data directly from the official ARDECO public repository through the exploitation of the ARDECO APIs. The APIs are completely transparent to the user and the provided functions provide a direct access to the ARDECO data. The ARDECO database is a collection of variables related to demography, employment, labour market, domestic product, capital formation. Each variable can be exposed in one or more units of measure as well as refers to total values plus additional dimensions like economic sectors, gender, age classes. Data can be also aggregated at country level according to the tercet classes as defined by EUROSTAT. The description of the ARDECO database can be found at the following URL <https://territorial.ec.europa.eu/ardeco>.
This package provides a framework for automated machine learning. Concretely, the focus is on the optimisation of bagging workflows. A bagging workflows is composed by three phases: (i) generation: which and how many predictive models to learn; (ii) pruning: after learning a set of models, the worst ones are cut off from the ensemble; and (iii) integration: how the models are combined for predicting a new observation. autoBagging optimises these processes by combining metalearning and a learning to rank approach to learn from metadata. It automatically ranks 63 bagging workflows by exploiting past performance and dataset characterization. A complete description of the method can be found in: Pinto, F., Cerqueira, V., Soares, C., Mendes-Moreira, J. (2017): "autoBagging: Learning to Rank Bagging Workflows with Metalearning" arXiv preprint arXiv:1706.09367.
This package creates complex autoregressive distributed lag (ARDL) models and constructs the underlying unrestricted and restricted error correction model (ECM) automatically, just by providing the order. It also performs the bounds-test for cointegration as described in Pesaran et al. (2001) <doi:10.1002/jae.616> and provides the multipliers and the cointegrating equation. The validity and the accuracy of this package have been verified by successfully replicating the results of Pesaran et al. (2001) in Natsiopoulos and Tzeremes (2022) <doi:10.1002/jae.2919>.
Datasets to Accompany S. Weisberg (2014, ISBN: 978-1-118-38608-8), "Applied Linear Regression," 4th edition. Many data files in this package are included in the `alr3` package as well, so only one of them should be used.
Compute the R-squared measure under the accelerated failure time (AFT) models proposed in Chan et. al. (2018) <doi:10.1080/03610918.2016.1177072>.