This package implements random number generation, plotting, and estimation algorithms for the two-parameter one-sided and two-sided M-Wright (Mainardi-Wright) family. The M-Wright distributions naturally generalize the widely used one-sided (Airy and half-normal or half-Gaussian) and symmetric (Airy and Gaussian or normal) models. These are widely studied in time-fractional differential equations. References: Cahoy and Minkabo (2017) <doi:10.3233/MAS-170388>; Cahoy (2012) <doi:10.1007/s00180-011-0269-x>; Cahoy (2012) <doi:10.1080/03610926.2010.543299>; Cahoy (2011); Mainardi, Mura, and Pagnini (2010) <doi:10.1155/2010/104505>.
This package provides a system for querying, retrieving and analyzing protocol- and results-related information on clinical trials from three public registers, the European Union Clinical Trials Register (EUCTR), ClinicalTrials.gov (CTGOV) and the ISRCTN. Trial information is downloaded, converted and stored in a database. Functions are included to identify deduplicated records, to easily find and extract variables (fields) of interest even from complex nesting as used by the registers, and to update previous queries. The package can be used for meta-analysis and trend-analysis of the design and conduct as well as for results of clinical trials.
At the Swiss Federal Statistical Office (SFSO), spatial maps of Switzerland are available free of charge as Cartographic bases for small-scale thematic mapping'. This package contains convenience functions to import ESRI (Environmental Systems Research Institute) shape files using the package sf and to plot them easily and quickly without having to worry too much about the technical details. It contains utilities to combine multiple areas to one single polygon and to find neighbours for single regions. For any point on a map, a special locator can be used to determine to which municipality, district or canton it belongs.
Several web services are available that provide access to elevation data. This package provides access to many of those services and returns elevation data either as an sf simple features object from point elevation services or as a raster object from raster elevation services. In future versions, elevatr will drop support for raster and will instead return terra objects. Currently, the package supports access to the Amazon Web Services Terrain Tiles <https://registry.opendata.aws/terrain-tiles/>, the Open Topography Global Datasets API <https://opentopography.org/developers/>, and the USGS Elevation Point Query Service <https://apps.nationalmap.gov/epqs/>.
The midasml package implements estimation and prediction methods for high-dimensional mixed-frequency (MIDAS) time-series and panel data regression models. The regularized MIDAS models are estimated using orthogonal (e.g. Legendre) polynomials and sparse-group LASSO (sg-LASSO) estimator. For more information on the midasml approach see Babii, Ghysels, and Striaukas (2021, JBES forthcoming) <doi:10.1080/07350015.2021.1899933>. The package is equipped with the fast implementation of the sg-LASSO estimator by means of proximal block coordinate descent. High-dimensional mixed frequency time-series data can also be easily manipulated with functions provided in the package.
This package provides a procedure for comparing multivariate samples associated with different groups. It uses principal component analysis to convert multivariate observations into a set of linearly uncorrelated statistical measures, which are then compared using a number of statistical methods. The procedure is independent of the distributional properties of samples and automatically selects features that best explain their differences, avoiding manual selection of specific points or summary statistics. It is appropriate for comparing samples of time series, images, spectrometric measures or similar multivariate observations. This package is described in Fachada et al. (2016) <doi:10.32614/RJ-2016-055>.
Calculate sample size or power for hierarchical endpoints. The package can handle any type of outcomes (binary, continuous, count, ordinal, time-to-event) and any number of such endpoints. It allows users to calculate sample size with a given power or to calculate power with a given sample size for hypothesis testing based on win ratios, win odds, net benefit, or DOOR (desirability of outcome ranking) as treatment effect between two groups for hierarchical endpoints. The methods of this package are described further in the paper by Barnhart, H. X. et al. (2024, <doi:10.1080/19466315.2024.2365629>).
Modern classes for tracking and movement data, building on sf spatial infrastructure, and early theoretical work from Turchin (1998, ISBN: 9780878938476), and Calenge et al. (2009) <doi:10.1016/j.ecoinf.2008.10.002>. Tracking data are series of locations with at least 2-dimensional spatial coordinates (x,y), a time index (t), and individual identification (id) of the object being monitored; movement data are made of trajectories, i.e. the line representation of the path, composed by steps (the straight-line segments connecting successive locations). sftrack is designed to handle movement of both living organisms and inanimate objects.
Bayesian clustering of spatial regions with similar functional shapes using spanning trees and latent Gaussian models. The method enforces spatial contiguity within clusters and supports a wide range of latent Gaussian models, including non-Gaussian likelihoods, via the R-INLA framework. The algorithm is based on Zhong, R., Chacón-Montalván, E. A., and Moraga, P. (2024) <doi:10.48550/arXiv.2407.12633>
, extending the approach of Zhang, B., Sang, H., Luo, Z. T., and Huang, H. (2023) <doi:10.1214/22-AOAS1643>. The package includes tools for model fitting, convergence diagnostics, visualization, and summarization of clustering results.
R implementation of TFactS
to predict which are the transcription factors (TFs), regulated in a biological condition based on lists of differentially expressed genes (DEGs) obtained from transcriptome experiments. This package is based on the TFactS
concept by Essaghir et al. (2010) <doi:10.1093/nar/gkq149> and expands it. It allows users to perform TFactS'-like
enrichment approach. The package can import and use the original catalogue file from the TFactS
as well as users defined catalogues of interest that are not supported by TFactS
(e.g., Arabidopsis).
This package provides a set of functions providing several visualization tools for exploring the behavior of the components in a network meta-analysis of multi-component (complex) interventions: - components descriptive analysis - heat plot of the two-by-two component combinations - leaving one component combination out scatter plot - violin plot for specific component combinations effects - density plot for components effects - waterfall plot for the interventions effects that differ by a certain component combination - network graph of components - rank heat plot of components for multiple outcomes. The implemented tools are described by Seitidis et al. (2023) <doi:10.1002/jrsm.1617>.
This method generates a tour path by interpolating between d-D frames in p-D using Givens rotations. The algorithm arises from the problem of zeroing elements of a matrix. This interpolation method is useful for showing specific d-D frames in the tour, as opposed to d-D planes, as done by the geodesic interpolation. It is useful for projection pursuit indexes which are not s invariant. See more details in Buj, Cook, Asimov and Hurley (2005) <doi:10.1016/S0169-7161(04)24014-7> and Batsaikhan, Cook and Laa (2023) <doi:10.48550/arXiv.2311.08181>
.
This package provides tools to access and manipulate Word and PowerPoint documents from R. The package focuses on tabular and graphical reporting from R; it also provides two functions that let users get document content into data objects. A set of functions lets add and remove images, tables and paragraphs of text in new or existing documents. When working with PowerPoint presentations, slides can be added or removed; shapes inside slides can also be added or removed. When working with Word documents, a cursor can be used to help insert or delete content at a specific location in the document.
This package provides a unified syntax for the simulation-based comparison of different single-stage basket trial designs with a binary endpoint and equal sample sizes in all baskets. Methods include the designs by Baumann et al. (2024) <doi:10.48550/arXiv.2309.06988>
, Fujikawa et al. (2020) <doi:10.1002/bimj.201800404>, Berry et al. (2020) <doi:10.1177/1740774513497539>, Neuenschwander et al. (2016) <doi:10.1002/pst.1730> and Psioda et al. (2021) <doi:10.1093/biostatistics/kxz014>. For the latter three designs, the functions are mostly wrappers for functions provided by the packages bhmbasket and bmabasket'.
The maximum likelihood estimation (MLE) of the count data models along with standard error of the estimates and Akaike information model section criterion are provided. The functions allow to compute the MLE for the following distributions such as the Bell distribution, the Borel distribution, the Poisson distribution, zero inflated Bell distribution, zero inflated Bell Touchard distribution, zero inflated Poisson distribution, zero one inflated Bell distribution and zero one inflated Poisson distribution. Moreover, the probability mass function (PMF), distribution function (CDF), quantile function (QF) and random numbers generation of the Bell Touchard and zero inflated Bell Touchard distribution are also provided.
This package provides functions for the computation of functional elastic shape means over sets of open planar curves. The package is particularly suitable for settings where these curves are only sparsely and irregularly observed. It uses a novel approach for elastic shape mean estimation, where planar curves are treated as complex functions and a full Procrustes mean is estimated from the corresponding smoothed Hermitian covariance surface. This is combined with the methods for elastic mean estimation proposed in Steyer, Stöcker, Greven (2022) <doi:10.1111/biom.13706>. See Stöcker et. al. (2022) <arXiv:2203.10522>
for details.
This package provides tools to assist planning and monitoring of time-to-event trials under complicated censoring assumptions and/or non-proportional hazards. There are three main components: The first is analytic calculation of predicted time-to-event trial properties, providing estimates of expected hazard ratio, event numbers and power under different analysis methods. The second is simulation, allowing stochastic estimation of these same properties. Thirdly, it provides parametric event prediction using blinded trial data, including creation of prediction intervals. Methods are based upon numerical integration and a flexible object-orientated structure for defining event, censoring and recruitment distributions (Curves).
We implement and extend the Dividing Local Gaussian Process algorithm by Lederer et al. (2020) <doi:10.48550/arXiv.2006.09446>
. Its main use case is in online learning where it is used to train a network of local GPs (referred to as tree) by cleverly partitioning the input space. In contrast to a single GP, GPTreeO
is able to deal with larger amounts of data. The package includes methods to create the tree and set its parameter, incorporating data points from a data stream as well as making joint predictions based on all relevant local GPs.
The Graphical Group Ridge GGRidge package package classifies ridge regression predictors in disjoint groups of conditionally correlated variables and derives different penalties (shrinkage parameters) for these groups of predictors. It combines the ridge regression method with the graphical model for high-dimensional data (i.e. the number of predictors exceeds the number of cases) or ill-conditioned data (e.g. in the presence of multicollinearity among predictors). The package reduces the mean square errors and the extent of over-shrinking of predictors as compared to the ridge method.Aldahmani, S. and Zoubeidi, T. (2020) <DOI:10.1080/00949655.2020.1803320>.
This package implements Multi-Calibration Boosting (2018) <https://proceedings.mlr.press/v80/hebert-johnson18a.html> and Multi-Accuracy Boosting (2019) <doi:10.48550/arXiv.1805.12317>
for the multi-calibration of a machine learning model's prediction. MCBoost updates predictions for sub-groups in an iterative fashion in order to mitigate biases like poor calibration or large accuracy differences across subgroups. Multi-Calibration works best in scenarios where the underlying data & labels are unbiased, but resulting models are. This is often the case, e.g. when an algorithm fits a majority population while ignoring or under-fitting minority populations.
This package provides a new pipeline to explore chemical structural similarity across metabolites. It allows the metabolite classification in structurally-related modules and identifies common shared functional groups. The KODAMA algorithm is used to highlight structural similarity between metabolites. See Cacciatore S, Tenori L, Luchinat C, Bennett PR, MacIntyre
DA. (2017) Bioinformatics <doi:10.1093/bioinformatics/btw705>, Cacciatore S, Luchinat C, Tenori L. (2014) Proc Natl Acad Sci USA <doi:10.1073/pnas.1220873111>, and Abdel-Shafy EA, Melak T, MacIntyre
DA, Zadra G, Zerbini LF, Piazza S, Cacciatore S. (2023) Bioinformatics Advances <doi:10.1093/bioadv/vbad053>.
This package provides statistical process control tools for stochastic textured surfaces. The current version supports the following tools: (1) generic modeling of stochastic textured surfaces. (2) local defect monitoring and diagnostics in stochastic textured surfaces, which was proposed by Bui and Apley (2018a) <doi:10.1080/00401706.2017.1302362>. (3) global change monitoring in the nature of stochastic textured surfaces, which was proposed by Bui and Apley (2018b) <doi:10.1080/00224065.2018.1507559>. (4) computation of dissimilarity matrix of stochastic textured surface images, which was proposed by Bui and Apley (2019b) <doi:10.1016/j.csda.2019.01.019>.
Partially penalized versions of specific transformation models implemented in package mlt'. Available models include a fully parametric version of the Cox model, other parametric survival models (Weibull, etc.), models for binary and ordered categorical variables, normal and transformed-normal (Box-Cox type) linear models, and continuous outcome logistic regression. Hyperparameter tuning is facilitated through model-based optimization functionalities from package mlrMBO
'. The accompanying vignette describes the methodology used in tramnet in detail. Transformation models and model-based optimization are described in Hothorn et al. (2019) <doi:10.1111/sjos.12291> and Bischl et al. (2016) <arxiv:1703.03373>, respectively.
The goal of the package is to equip the jmcm package (current version 0.2.1) with estimations of the covariance of estimated parameters. Two methods are provided. The first method is to use the inverse of estimated Fisher's information matrix, see M. Pourahmadi (2000) <doi:10.1093/biomet/87.2.425>, M. Maadooliat, M. Pourahmadi and J. Z. Huang (2013) <doi:10.1007/s11222-011-9284-6>, and W. Zhang, C. Leng, C. Tang (2015) <doi:10.1111/rssb.12065>. The second method is bootstrap based, see Liu, R.Y. (1988) <doi:10.1214/aos/1176351062> for reference.