Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
mastR is an R package designed for automated screening of signatures of interest for specific research questions. The package is developed for generating refined lists of signature genes from multiple group comparisons based on the results from edgeR and limma differential expression (DE) analysis workflow. It also takes into account the background noise of tissue-specificity, which is often ignored by other marker generation tools. This package is particularly useful for the identification of group markers in various biological and medical applications, including cancer research and developmental biology.
Affymetrix Affymetrix Mu19KsubC Array annotation data (chip mu19ksubc) assembled using data from public repositories.
Annotation package containing all available miRNA names from 22 versions (data from http://www.mirbase.org/).
Data package containing a multi-sample multi-group spatial dataset in SpatialExperiment Bioconductor object format.
This package can help user to run the m6Aboost model on their own miCLIP2 data. The package includes functions to assign the read counts and get the features to run the m6Aboost model. The miCLIP2 data should be stored in a GRanges object. More details can be found in the vignette.
Single-cell RNA-sequencing (scRNA-seq) has made it possible to profile gene expression in tissues at high resolution. An important preprocessing step prior to performing downstream analyses is to identify and remove cells with poor or degraded sample quality using quality control (QC) metrics. Two widely used QC metrics to identify a ‘low-quality’ cell are (i) if the cell includes a high proportion of reads that map to mitochondrial DNA encoded genes (mtDNA) and (ii) if a small number of genes are detected. miQC is data-driven QC metric that jointly models both the proportion of reads mapping to mtDNA and the number of detected genes with mixture models in a probabilistic framework to predict the low-quality cells in a given dataset.
This package provides a method to identify differential expression genes in the same or different species. Given that non-DE genes have some similarities in features, a scaling-free minimum enclosing ball (SFMEB) model is built to cover those non-DE genes in feature space, then those DE genes, which are enormously different from non-DE genes, being regarded as outliers and rejected outside the ball. The method on this package is described in the article A minimum enclosing ball method to detect differential expression genes for RNA-seq data'. The SFMEB method is extended to the scMEB method that considering two or more potential types of cells or unknown labels scRNA-seq dataset DEGs identification.
Save MultiAssayExperiments to h5mu files supported by muon and mudata. Muon is a Python framework for multimodal omics data analysis. It uses an HDF5-based format for data storage.
This package allows to estimate missing values in DNA methylation data. methyLImp method is based on linear regression since methylation levels show a high degree of inter-sample correlation. Implementation is parallelised over chromosomes since probes on different chromosomes are usually independent. Mini-batch approach to reduce the runtime in case of large number of samples is available.
mitology allows to study the mitochondrial activity throught high-throughput RNA-seq data. It is based on a collection of genes whose proteins localize in to the mitochondria. From these, mitology provides a reorganization of the pathways related to mitochondria activity from Reactome and Gene Ontology. Further a ready-to-use implementation of MitoCarta3.0 pathways is included.
Multi-omic Pathway Analysis of Cells (MPAC), integrates multi-omic data for understanding cellular mechanisms. It predicts novel patient groups with distinct pathway profiles as well as identifying key pathway proteins with potential clinical associations. From CNA and RNA-seq data, it determines genes’ DNA and RNA states (i.e., repressed, normal, or activated), which serve as the input for PARADIGM to calculate Inferred Pathway Levels (IPLs). It also permutes DNA and RNA states to create a background distribution to filter IPLs as a way to remove events observed by chance. It provides multiple methods for downstream analysis and visualization.
Predicts the sex of samples in gene expression microarray datasets.
This package provides functions for preprocessing, automated gating and meta-analysis of cytometry data. It also provides functions that facilitate the collection of cytometry data from the ImmPort database.
This package implements methods for testing multiple mediators.
Memory efficient analysis of base resolution DNA methylation data in both the CpG and non-CpG sequence context. Integration of DNA methylation data derived from any methodology providing base- or low-resolution data.
Store minor allele frequency data from NHLBI TOPMed for the human genome version hg19.
FHCRC Genomics Shared Resource Mu22v3 Annotation Data (Mu22v3) assembled using data from public repositories.
This package provides a package containing an environment representing the Mu19KsubA.CDF file.
Topological pathway analysis tool able to integrate multi-omics data. It finds survival-associated modules or significant modules for two-class analysis. This tool have two main methods: pathway tests and module tests. The latter method allows the user to dig inside the pathways itself.
MWASTools provides a complete pipeline to perform metabolome-wide association studies. Key functionalities of the package include: quality control analysis of metabonomic data; MWAS using different association models (partial correlations; generalized linear models); model validation using non-parametric bootstrapping; visualization of MWAS results; NMR metabolite identification using STOCSY; and biological interpretation of MWAS results.
Data objects necessary to some mCSEA package functions. There are also example data objects to illustrate mCSEA package functionality.
MerfishData is an ExperimentHub package that serves publicly available datasets obtained with Multiplexed Error-Robust Fluorescence in situ Hybridization (MERFISH). MERFISH is a massively multiplexed single-molecule imaging technology capable of simultaneously measuring the copy number and spatial distribution of hundreds to tens of thousands of RNA species in individual cells. The scope of the package is to provide MERFISH data for benchmarking and analysis.
This package provide a method for doing gene set analysis based on multiple omics data.
MoleculeExperiment contains functions to create and work with objects from the new MoleculeExperiment class. We introduce this class for analysing molecule-based spatial transcriptomics data (e.g., Xenium by 10X, Cosmx SMI by Nanostring, and Merscope by Vizgen). This allows researchers to analyse spatial transcriptomics data at the molecule level, and to have standardised data formats accross vendors.