Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Identification of differentially expressed genes and false discovery rate (FDR) calculation by Multiple Comparison test.
The functions in this package return optimized parameter estimates and log likelihoods for mixture models of truncated data with normal or lognormal distributions.
The package conducts pathway testing from untargetted metabolomics data. It requires the user to supply feature-level test results, from case-control testing, regression, or other suitable feature-level tests for the study design. Weights are given to metabolic features based on how many metabolites they could potentially match to. The package can combine positive and negative mode results in pathway tests.
This package provides a package containing an environment representing the Mu19KsubC.CDF file.
The MouseAgingData package provides analysis-ready data resources from different studies focused on aging and rejuvenation in mice. The package currently provides two 10x Genomics single-cell RNA-seq datasets. The first study profiled the aging mouse brain measured across 37,089 cells (Ximerakis et al., 2019). The second study investigated parabiosis by profiling a total of 105,329 cells (Ximerakis & Holton et al., 2023). The datasets are provided as SingleCellExperiment objects and provide raw UMI counts and cell metadata.
Base annotation databases for mouse, intended ONLY to be used by AnnotationDbi to produce regular annotation packages.
Data Package automatically created on Sun Nov 19 15:59:29 2006.
This is an R/shiny package to perform functional enrichment analysis for microbiome data. This package was based on clusterProfiler. Moreover, MicrobiomeProfiler support KEGG enrichment analysis, COG enrichment analysis, Microbe-Disease association enrichment analysis, Metabo-Pathway analysis.
Subsampled Hi-C in HEK cells expressing the NHA9 fusion with an F to S mutated IDR ("FS") or without any mutations to the IDR ("Wildtype" or "WT"). These files are used for testing mariner functions and some examples.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was MOE430B\_probe\_tab.
MSstatsQC is an R package which provides longitudinal system suitability monitoring and quality control tools for proteomic experiments.
The package contains functions for inferece of target gene regulation by miRNA, based on only target gene expression profile.
Provide functions for performing abundance and compositional based binning on metagenomic samples, directly from FASTA or FASTQ files. Functions are implemented in Java and called via rJava. Parallel implementation that operates directly on input FASTA/FASTQ files for fast execution.
Clustering is carried out to identify patterns in transcriptomics profiles to determine clinically relevant subgroups of patients. Feature (gene) selection is a critical and an integral part of the process. Currently, there are many feature selection and clustering methods to identify the relevant genes and perform clustering of samples. However, choosing an appropriate methodology is difficult. In addition, extensive feature selection methods have not been supported by the available packages. Hence, we developed an integrative R-package called multiClust that allows researchers to experiment with the choice of combination of methods for gene selection and clustering with ease. Using multiClust, we identified the best performing clustering methodology in the context of clinical outcome. Our observations demonstrate that simple methods such as variance-based ranking perform well on the majority of data sets, provided that the appropriate number of genes is selected. However, different gene ranking and selection methods remain relevant as no methodology works for all studies.
msPurity R package was developed to: 1) Assess the spectral quality of fragmentation spectra by evaluating the "precursor ion purity". 2) Process fragmentation spectra. 3) Perform spectral matching. What is precursor ion purity? -What we call "Precursor ion purity" is a measure of the contribution of a selected precursor peak in an isolation window used for fragmentation. The simple calculation involves dividing the intensity of the selected precursor peak by the total intensity of the isolation window. When assessing MS/MS spectra this calculation is done before and after the MS/MS scan of interest and the purity is interpolated at the recorded time of the MS/MS acquisition. Additionally, isotopic peaks can be removed, low abundance peaks are removed that are thought to have limited contribution to the resulting MS/MS spectra and the isolation efficiency of the mass spectrometer can be used to normalise the intensities used for the calculation.
Affymetrix mogene20 annotation data (chip mogene20stprobeset) assembled using data from public repositories.
Simple and efficient workflow for time-course gene expression data, built on publictly available open-source projects hosted on CRAN and bioconductor. moanin provides helper functions for all the steps required for analysing time-course data using functional data analysis: (1) functional modeling of the timecourse data; (2) differential expression analysis; (3) clustering; (4) downstream analysis.
This is a package for the discovery of regulatory regions from Bis-seq data.
MAPFX is an end-to-end toolbox that pre-processes the raw data from MPC experiments (e.g., BioLegend's LEGENDScreen and BD Lyoplates assays), and further imputes the ‘missing’ infinity markers in the wells without those measurements. The pipeline starts by performing background correction on raw intensities to remove the noise from electronic baseline restoration and fluorescence compensation by adapting a normal-exponential convolution model. Unwanted technical variation, from sources such as well effects, is then removed using a log-normal model with plate, column, and row factors, after which infinity markers are imputed using the informative backbone markers as predictors. The completed dataset can then be used for clustering and other statistical analyses. Additionally, MAPFX can be used to normalise data from FFC assays as well.
Raw amplification data from a large microRNA mixture / dilution study. These data are used by the miRcomp package to assess the performance of methods that estimate expression from the amplification curves.
This package provides data access to counts matrices and meta-data for single-cell RNA sequencing data of thymic epithlial cells across mouse ageing using SMARTseq2 and 10X Genommics chemistries. Access is provided as a data package via ExperimentHub. It is designed to facilitate the re-use of data from Baran-Gale _et al._ in a consistent format that includes relevant and informative meta-data.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was MG-U74Bv2\_probe\_tab.
This package implements functions for calling methylation for all cytosines in the genome.
motifcounter provides motif matching, motif counting and motif enrichment functionality based on position frequency matrices. The main features of the packages include the utilization of higher-order background models and accounting for self-overlapping motif matches when determining motif enrichment. The background model allows to capture dinucleotide (or higher-order nucleotide) composition adequately which may reduced model biases and misleading results compared to using simple GC background models. When conducting a motif enrichment analysis based on the motif match count, the package relies on a compound Poisson distribution or alternatively a combinatorial model. These distribution account for self-overlapping motif structures as exemplified by repeat-like or palindromic motifs, and allow to determine the p-value and fold-enrichment for a set of observed motif matches.