Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Epidemiological population dynamics models traditionally define a pathogen's virulence as the increase in the per capita rate of mortality of infected hosts due to infection. This package provides functions allowing virulence to be estimated by maximum likelihood techniques. The approach is based on the analysis of relative survival comparing survival in matching cohorts of infected vs. uninfected hosts (Agnew 2019) <doi:10.1101/530709>.
Collect your data on digital marketing campaigns from Amazon Ads using the Windsor.ai API <https://windsor.ai/api-fields/>.
This package provides a collection of several pharmacovigilance signal detection methods based on adaptive lasso. Additional lasso-based and propensity score-based signal detection approaches are also supplied. See Courtois et al <doi:10.1186/s12874-021-01450-3>.
This package provides a suite of functions for analyzing sequences of events. Users can generate and code sequences based on predefined rules, with a special focus on the identification of sequences coded as ABA (when one element appears, followed by a different one, and then followed by the first). Additionally, the package offers the ability to calculate the length of consecutive ABA'-coded sequences sharing common elements. The methods implemented in this package are based on the work by Ziembowicz, K., Rychwalska, A., & Nowak, A. (2022). <doi:10.1177/10464964221118674>.
This package provides a set of Study Data Tabulation Model (SDTM) datasets from the Clinical Data Interchange Standards Consortium (CDISC) pilot project used for testing and developing Analysis Data Model (ADaM) derivations inside the admiral package.
The meaning of adea is "alternate DEA". This package is devoted to provide the alternative method of DEA described in the paper entitled "Stepwise Selection of Variables in DEA Using Contribution Load", by F. Fernandez-Palacin, M. A. Lopez-Sanchez and M. Munoz-Marquez. Pesquisa Operacional 38 (1), pg. 1-24, 2018. <doi:10.1590/0101-7438.2018.038.01.0031>. A full functional on-line and interactive version is available at <https://knuth.uca.es/shiny/DEA/>.
Simulates battles in the board game Axis and Allies Spring 1942, and calculates your probability of winning a battle. This speeds the game up significantly.
This package provides a modeling package compiling applicability domain methods in R. It combines different methods to measure the amount of extrapolation new samples can have from the training set. See Gadaleta et al (2016) <doi:10.4018/IJQSPR.2016010102> for an overview of applicability domains.
The AFfunction() is a function which returns an estimate of the Attributable Fraction (AF) and a plot of the AF as a function of heritability, disease prevalence, size of target group and intervention effect. Since the AF is a function of several factors, a shiny app is used to better illustrate how the relationship between the AF and heritability depends on several other factors. The app is ran by the function runShinyApp(). For more information see Dahlqwist E et al. (2019) <doi:10.1007/s00439-019-02006-8>.
Visualize clonal expansion via circle-packing. APackOfTheClones extends scRepertoire to produce a publication-ready visualization of clonal expansion at a single cell resolution, by representing expanded clones as differently sized circles. The method was originally implemented by Murray Christian and Ben Murrell in the following immunology study: Ma et al. (2021) <doi:10.1126/sciimmunol.abg6356>.
Simulation and estimation tools for various types of ambit processes, including trawl processes and weighted trawl processes.
Spatial modeling of energy balance and actual evapotranspiration using satellite images and meteorological data. Options of satellite are: Landsat-8 (with and without thermal bands), Sentinel-2 and MODIS. Respectively spatial resolutions are 30, 100, 10 and 250 meters. User can use data from a single meteorological station or a grid of meteorological stations (using any spatial interpolation method). Silva, Teixeira, and Manzione (2019) <doi:10.1016/j.envsoft.2019.104497>.
Dynamic regression for time series using Extreme Gradient Boosting with hyper-parameter tuning via Bayesian Optimization or Random Search.
Extraction, preparation, visualisation and analysis of TERN AusPlots ecosystem monitoring data. Direct access to plot-based data on vegetation and soils across Australia, including physical sample barcode numbers. Simple function calls extract the data and merge them into species occurrence matrices for downstream analysis, or calculate things like basal area and fractional cover. TERN AusPlots is a national field plot-based ecosystem surveillance monitoring method and dataset for Australia. The data have been collected across a national network of plots and transects by the Terrestrial Ecosystem Research Network (TERN - <https://www.tern.org.au>), an Australian Government NCRIS-enabled project, and its Ecosystem Surveillance platform (<https://www.tern.org.au/tern-land-observatory/ecosystem-surveillance-and-environmental-monitoring/>).
This package provides tools for raster georeferencing, grid affine transforms, and general raster logic. These functions provide converters between raster specifications, world vector, geotransform, RasterIO window, and RasterIO window in sf package list format. There are functions to offset a matrix by padding any of four corners (useful for vectorizing neighbourhood operations), and helper functions to harvesting user clicks on a graphics device to use for simple georeferencing of images. Methods used are available from <https://en.wikipedia.org/wiki/World_file> and <https://gdal.org/user/raster_data_model.html>.
This package implements adaptive tau leaping to approximate the trajectory of a continuous-time stochastic process as described by Cao et al. (2007) The Journal of Chemical Physics <doi:10.1063/1.2745299> (aka. the Gillespie stochastic simulation algorithm). This package is based upon work supported by NSF DBI-0906041 and NIH K99-GM104158 to Philip Johnson and NIH R01-AI049334 to Rustom Antia.
This contains helpful functions for parsing, managing, plotting, and visualizing activities, most often from GPX (GPS Exchange Format) files recorded by GPS devices. It allows easy parsing of the source files into standard R data formats, along with functions to compute derived data for the activity, and to plot the activity in a variety of ways.
Functionalities to automatically generate interactive visualizations for statistical results supported by ggfortify', such as time series, PCA, clustering and survival analysis, with plotly.js <https://plotly.com/> and ggplot2 style. The generated visualizations can also be easily extended using ggplot2 and plotly syntax while staying interactive.
Allows the user to connect with the World Spider Catalogue (WSC; <https://wsc.nmbe.ch/>) and the World Spider Trait (WST; <https://spidertraits.sci.muni.cz/>) databases. Also performs several basic functions such as checking names validity, retrieving coordinate data from the Global Biodiversity Information Facility (GBIF; <https://www.gbif.org/>), and mapping.
Self-organizing maps (also known as SOM, see Kohonen (2001) <doi:10.1007/978-3-642-56927-2>) are a method for dimensionality reduction and clustering of continuous data. This package introduces interactive (html) graphics for easier analysis of SOM results. It also features an interactive interface, for push-button training and visualization of SOM on numeric, categorical or mixed data, as well as tools to evaluate the quality of SOM.
R wrapper around the argon HTML library. More at <https://demos.creative-tim.com/argon-design-system/>.
This package contains functions carrying out adaptive procedures using mixed scaling approach to establish bioequivalence for in-vitro permeation test (IVPT) data. Currently, the package provides procedures based on parallel replicate design and balanced data, according to the U.S. Food and Drug Administration's "Draft Guidance on Acyclovir" <https://www.accessdata.fda.gov/drugsatfda_docs/psg/Acyclovir_topical%20cream_RLD%2021478_RV12-16.pdf>. Potvin et al. (2008) <doi:10.1002/pst.294> provides the basis for our adaptive design (see Method B). For a comprehensive overview of the method, refer to Lim et al. (2023) <doi:10.1002/pst.2333>. This package reflects the views of the authors and should not be construed to represent the views or policies of the U.S. Food and Drug Administration.
This package provides functions to compute various clinical scores used in healthcare. These include the Charlson Comorbidity Index (CCI), predicting 10-year survival in patients with multiple comorbidities; the EPICES score, an individual indicator of precariousness considering its multidimensional nature; the MELD score for chronic liver disease severity; the Alternative Fistula Risk Score (a-FRS) for postoperative pancreatic fistula risk; and the Distal Pancreatectomy Fistula Risk Score (D-FRS) for risk following distal pancreatectomy. For detailed methodology, refer to Charlson et al. (1987) <doi:10.1016/0021-9681(87)90171-8> , Sass et al. (2006) <doi:10.1007/s10332-006-0131-5>, Kamath et al. (2001) <doi:10.1053/jhep.2001.22172>, Kim et al. (2008) <doi:10.1056/NEJMoa0801209> Kim et al. (2021) <doi:10.1053/j.gastro.2021.08.050>, Mungroop et al. (2019) <doi:10.1097/SLA.0000000000002620>, and de Pastena et al. (2023) <doi:10.1097/SLA.0000000000005497>..
The normal process of creating clinical study slides is that a statistician manually type in the numbers from outputs and a separate statistician to double check the typed in numbers. This process is time consuming, resource intensive, and error prone. Automatic slide generation is a solution to address these issues. It reduces the amount of work and the required time when creating slides, and reduces the risk of errors from manually typing or copying numbers from the output to slides. It also helps users to avoid unnecessary stress when creating large amounts of slide decks in a short time window.