The Common Workflow Language <https://www.commonwl.org/> is an open standard for describing data analysis workflows. This package takes the raw Common Workflow Language workflows encoded in JSON or YAML and turns the workflow elements into tidy data frames or lists. A graph representation for the workflow can be constructed and visualized with the parsed workflow inputs, outputs, and steps. Users can embed the visualizations in their Shiny applications, and export them as HTML files or static images.
Simple trustworthy utility functions to use TauDEM (Terrain Analysis Using Digital Elevation Models <https://hydrology.usu.edu/taudem/taudem5/>) command-line interface. This package provides a guide to installation of TauDEM and its dependencies GDAL (Geopatial Data Abstraction Library) and MPI (Message Passing Interface) for different operating systems. Moreover, it checks that TauDEM and its dependencies are correctly installed and included to the PATH, and it provides wrapper commands for calling TauDEM methods from R.
The shiny application Wallace is a modular platform for reproducible modeling of species niches and distributions. Wallace guides users through a complete analysis, from the acquisition of species occurrence and environmental data to visualizing model predictions on an interactive map, thus bundling complex workflows into a single, streamlined interface. An extensive vignette, which guides users through most package functionality can be found on the package's GitHub Pages website: <https://wallaceecomod.github.io/wallace/articles/tutorial-v2.html>.
C++ classes to embed R in C++ (and C) applications A C++ class providing the R interpreter is offered by this package making it easier to have "R inside" your C++ application. As R itself is embedded into your application, a shared library build of R is required. This works on Linux, OS X and even on Windows provided you use the same tools used to build R itself. Numerous examples are provided in the nine subdirectories of the examples/ directory of the installed package: standard, mpi (for parallel computing), qt (showing how to embed RInside inside a Qt GUI application), wt (showing how to build a "web-application" using the Wt toolkit), armadillo (for RInside use with RcppArmadillo'), eigen (for RInside use with RcppEigen'), and c_interface for a basic C interface and Ruby illustration. The examples use GNUmakefile(s) with GNU extensions, so a GNU make is required (and will use the GNUmakefile automatically). Doxygen'-generated documentation of the C++ classes is available at the RInside website as well.
Estimates the pooled (unadjusted) Receiver Operating Characteristic (ROC) curve, the covariate-adjusted ROC (AROC) curve, and the covariate-specific/conditional ROC (cROC) curve by different methods, both Bayesian and frequentist. Also, it provides functions to obtain ROC-based optimal cutpoints utilizing several criteria. Based on Erkanli, A. et al. (2006) <doi:10.1002/sim.2496>; Faraggi, D. (2003) <doi:10.1111/1467-9884.00350>; Gu, J. et al. (2008) <doi:10.1002/sim.3366>; Inacio de Carvalho, V. et al. (2013) <doi:10.1214/13-BA825>; Inacio de Carvalho, V., and Rodriguez-Alvarez, M.X. (2022) <doi:10.1214/21-STS839>; Janes, H., and Pepe, M.S. (2009) <doi:10.1093/biomet/asp002>; Pepe, M.S. (1998) <http://www.jstor.org/stable/2534001?seq=1>; Rodriguez-Alvarez, M.X. et al. (2011a) <doi:10.1016/j.csda.2010.07.018>; Rodriguez-Alvarez, M.X. et al. (2011a) <doi:10.1007/s11222-010-9184-1>. Please see Rodriguez-Alvarez, M.X. and Inacio, V. (2021) <doi:10.32614/RJ-2021-066> for more details.
MetCirc comprises a workflow to interactively explore high-resolution MS/MS metabolomics data. MetCirc uses the Spectra object infrastructure defined in the package Spectra that stores MS/MS spectra. MetCirc offers functionality to calculate similarity between precursors based on the normalised dot product, neutral losses or user-defined functions and visualise similarities in a circular layout. Within the interactive framework the user can annotate MS/MS features based on their similarity to (known) related MS/MS features.
Scale4C is an R/Bioconductor package for scale-space transformation and visualization of 4C-seq data. The scale-space transformation is a multi-scale visualization technique to transform a 2D signal (e.g. 4C-seq reads on a genomic interval of choice) into a tesselation in the scale space (2D, genomic position x scale factor) by applying different smoothing kernels (Gauss, with increasing sigma). This transformation allows for explorative analysis and comparisons of the data's structure with other samples.
Bayesian quantile regression using the asymmetric Laplace distribution, both continuous as well as binary dependent variables are supported. The package consists of implementations of the methods of Yu & Moyeed (2001) <doi:10.1016/S0167-7152(01)00124-9>, Benoit & Van den Poel (2012) <doi:10.1002/jae.1216> and Al-Hamzawi, Yu & Benoit (2012) <doi:10.1177/1471082X1101200304>. To speed up the calculations, the Markov Chain Monte Carlo core of all algorithms is programmed in Fortran and called from R.
This package provides methods for difference-in-differences with a continuous treatment and staggered treatment adoption. Includes estimation of treatment effects and causal responses as a function of the dose, event studies indexed by length of exposure to the treatment, and aggregation into overall average effects. Uniform inference procedures are included, along with both parametric and nonparametric models for treatment effects. The methods are based on Callaway, Goodman-Bacon, and Sant'Anna (2025) <doi:10.48550/arXiv.2107.02637>.
This package provides a different way for calculating pdf/pmf, cdf, quantile and random data such that the user is able to consider the name of related distribution as an argument and so easily can changed by a changing argument by user. It must be mentioned that the core and computation base of package DISTRIB is package stats'. Although similar functions are introduced previously in package stats', but the package DISTRIB has some special applications in some special computational programs.
This package provides an R interface to the GeoServer REST API, allowing to upload and publish data in a GeoServer web-application and expose data to OGC Web-Services. The package currently supports all CRUD (Create,Read,Update,Delete) operations on GeoServer workspaces, namespaces, datastores (stores of vector data), featuretypes, layers, styles, as well as vector data upload operations. For more information about the GeoServer REST API, see <https://docs.geoserver.org/stable/en/user/rest/>.
The iterLap (iterated Laplace approximation) algorithm approximates a general (possibly non-normalized) probability density on R^p, by repeated Laplace approximations to the difference between current approximation and true density (on log scale). The final approximation is a mixture of multivariate normal distributions and might be used for example as a proposal distribution for importance sampling (eg in Bayesian applications). The algorithm can be seen as a computational generalization of the Laplace approximation suitable for skew or multimodal densities.
For high-dimensional correlated observations, this package carries out the L_1 penalized maximum likelihood estimation of the precision matrix (network) and the correlation parameters. The correlated data can be longitudinal data (may be irregularly spaced) with dampening correlation or clustered data with uniform correlation. For the details of the algorithms, please see the paper Jie Zhou et al. Identifying Microbial Interaction Networks Based on Irregularly Spaced Longitudinal 16S rRNA sequence data <doi:10.1101/2021.11.26.470159>.
Observational studies are limited in that there could be an unmeasured variable related to both the response variable and the primary predictor. If this unmeasured variable were included in the analysis it would change the relationship (possibly changing the conclusions). Sensitivity analysis is a way to see how much of a relationship needs to exist with the unmeasured variable before the conclusions change. This package provides tools for doing a sensitivity analysis for regression (linear, logistic, and cox) style models.
This package provides tools for processing and analyzing data from the O-GlcNAcAtlas database <https://oglcnac.org/>, as described in Ma (2021) <doi:10.1093/glycob/cwab003>. It integrates UniProt <https://www.uniprot.org/> API calls to retrieve additional information. It is specifically designed for research workflows involving O-GlcNAcAtlas data, providing a flexible and user-friendly interface for customizing and downloading processed results. Interactive elements allow users to easily adjust parameters and handle various biological datasets.
In bulk epigenome/transcriptome experiments, molecular expression is measured in a tissue, which is a mixture of multiple types of cells. This package tests association of a disease/phenotype with a molecular marker for each cell type. The proportion of cell types in each sample needs to be given as input. The package is applicable to epigenome-wide association study (EWAS) and differential gene expression analysis. Takeuchi and Kato (submitted) "omicwas: cell-type-specific epigenome-wide and transcriptome association study".
An assortment of helper functions for managing data (e.g., rotating values in matrices by a user-defined angle, switching from row- to column-indexing), dates (e.g., intuiting year from messy date strings), handling missing values (e.g., removing elements/rows across multiple vectors or matrices if any have an NA), text (e.g., flushing reports to the console in real-time); and combining data frames with different schema (copying, filling, or concatenating columns or applying functions before combining).
Analyzis and filtering of phylogenomics datasets. It takes an input either a collection of gene trees (then transformed to matrices) or directly a collection of gene matrices and performs an iterative process to identify what species in what genes are outliers, and whose elimination significantly improves the concordance between the input matrices. The methods builds upon the Distatis approach (Abdi et al. (2005) <doi:10.1101/2021.09.08.459421>), a generalization of classical multidimensional scaling to multiple distance matrices.
We propose a novel two-step procedure to combine epidemiological data obtained from diverse sources with the aim to quantify risk factors affecting the probability that an individual develops certain disease such as cancer. See Hui Huang, Xiaomei Ma, Rasmus Waagepetersen, Theodore R. Holford, Rong Wang, Harvey Risch, Lloyd Mueller & Yongtao Guan (2014) A New Estimation Approach for Combining Epidemiological Data From Multiple Sources, Journal of the American Statistical Association, 109:505, 11-23, <doi:10.1080/01621459.2013.870904>.
Utility functions that help with common base-R problems relating to lists. Lists in base-R are very flexible. This package provides functions to quickly and easily characterize types of lists. That is, to identify if all elements in a list are null, data.frames, lists, or fully named lists. Other functionality is provided for the handling of lists, such as the easy splitting of lists into equally sized groups, and the unnesting of data.frames within fully named lists.
This package provides a lightweight toolkit to reduce the size of a list object. The object is minimized by recursively removing elements from the object one-by-one. The process is constrained by a reference function call specified by the user, where the target object is given as an argument. The procedure will not allow elements to be removed from the object, that will cause results from the function call to diverge from the function call with the original object.
Rakarrack is a richly featured multi-effects processor emulating a guitar effects pedalboard. Effects include compressor, expander, noise gate, equalizers, exciter, flangers, chorus, various delay and reverb effects, distortion modules and many more. Most of the effects engine is built from modules found in the excellent software synthesizer ZynAddSubFX. Presets and user interface are optimized for guitar, but Rakarrack processes signals in stereo while it does not apply internal band-limiting filtering, and thus is well suited to all musical instruments and vocals.
This package lets you generate planar and spherical triangle meshes, compute finite element calculations for 1- and 2-dimensional flat and curved manifolds with associated basis function spaces, methods for lines and polygons, and transparent handling of coordinate reference systems and coordinate transformation, including sf and sp geometries. The core fmesher library code was originally part of the INLA package, and implements parts of "Triangulations and Applications" by Hjelle and Daehlen (2006) <doi:10.1007/3-540-33261-8>.
Subject recruitment for medical research is challenging. Slow patient accrual leads to delay in research. Accrual monitoring during the process of recruitment is critical. Researchers need reliable tools to manage the accrual rate. This package provides an implementation of a Bayesian method that integrates researcher's experience on previous trials and data from the current study, providing reliable prediction on accrual rate for clinical studies. It provides functions for Bayesian accrual prediction which can be easily used by statisticians and clinical researchers.