This package provides a collection of miscellaneous methods to simplify various tasks, including plotting, data.frame and matrix transformations, environment functions, regular expression methods, and string and logical operations, as well as numerical and statistical tools. Most of the methods are simple but useful wrappers of common base R functions, which extend S3 generics or provide default values for important parameters.
This package provides tools for Natural Language Processing in French and texts from Marcel Proust's collection "A La Recherche Du Temps Perdu". The novels contained in this collection are "Du cote de chez Swann ", "A l'ombre des jeunes filles en fleurs","Le Cote de Guermantes", "Sodome et Gomorrhe I et II", "La Prisonniere", "Albertine disparue", and "Le Temps retrouve".
This package implements the methods proposed by Olley, G.S. and Pakes, A. (1996) <doi:10.2307/2171831>, Levinsohn, J. and Petrin, A. (2003) <doi:10.1111/1467-937X.00246>, Ackerberg, D.A. and Caves, K. and Frazer, G. (2015) <doi:10.3982/ECTA13408> and Wooldridge, J.M. (2009) <doi:10.1016/j.econlet.2009.04.026> for structural productivity estimation .
Uses the fst package to store genotype probabilities on disk for the qtl2 package. These genotype probabilities are a central data object for mapping quantitative trait loci (QTL), but they can be quite large. The facilities in this package enable the genotype probabilities to be stored on disk, leading to reduced memory usage with only a modest increase in computation time.
This package provides methods for the analysis of signed networks. This includes several measures for structural balance as introduced by Cartwright and Harary (1956) <doi:10.1037/h0046049>, blockmodeling algorithms from Doreian (2008) <doi:10.1016/j.socnet.2008.03.005>, various centrality indices, and projections of signed two-mode networks introduced by Schoch (2020) <doi:10.1080/0022250X.2019.1711376>.
An implementation of a boosted Tweedie compound Poisson model proposed by Yang, Y., Qian, W. and Zou, H. (2018) <doi:10.1080/07350015.2016.1200981>. It is capable of fitting a flexible nonlinear Tweedie compound Poisson model (or a gamma model) and capturing high-order interactions among predictors. This package is based on the gbm package originally developed by Greg Ridgeway.
The goal of MineICA
is to perform Independent Component Analysis (ICA) on multiple transcriptome datasets, integrating additional data (e.g molecular, clinical and pathological). This Integrative ICA helps the biological interpretation of the components by studying their association with variables (e.g sample annotations) and gene sets, and enables the comparison of components from different datasets using correlation-based graph.
The affyPLM provides a package that extends and improves the functionality of the base affy package. For speeding up the runs, it includes routines that make heavy use of compiled code. The central focus is on implementation of methods for fitting probe-level models and tools using these models. PLM based quality assessment tools are also provided.
This package provides estimators for multinomial logit models in their conditional logit and baseline logit variants, with or without random effects, with or without overdispersion. Random effects models are estimated using the PQL technique (based on a Laplace approximation) or the MQL technique (based on a Solomon-Cox approximation). Estimates should be treated with caution if the group sizes are small.
This package provides the Molecular Signatures Database (MSigDB) gene sets typically used with the Gene Set Enrichment Analysis (GSEA) software in a standard R data frame with key-value pairs. Included are the original human gene symbols and Entrez IDs as well as the equivalents for various frequently studied model organisms such as mouse, rat, pig, fly, and yeast.
RadeonTop monitors resource consumption on supported AMD Radeon Graphics Processing Units (GPUs), either in real time as bar graphs on a terminal or saved to a file for further processing. It measures both the activity of the GPU as a whole, which is also accurate during OpenCL computations, as well as separate component statistics that are only meaningful under OpenGL graphics workloads.
This package provides a collection of algorithms and functions to aid statistical modeling. It includes growth curve comparisons, limiting dilution analysis (aka ELDA), mixed linear models, heteroscedastic regression, inverse-Gaussian probability calculations, Gauss quadrature and a secure convergence algorithm for nonlinear models. It also includes advanced generalized linear model functions that implement secure convergence, dispersion modeling and Tweedie power-law families.
Ggplot2 is an implementation of the grammar of graphics in R. It combines the advantages of both base and lattice graphics: conditioning and shared axes are handled automatically, and you can still build up a plot step by step from multiple data sources. It also implements a sophisticated multidimensional conditioning system and a consistent interface to map data to aesthetic attributes.
Network Security Services (NSS) is a set of libraries designed to support cross-platform development of security-enabled client and server applications. Applications built with NSS can support SSL v2 and v3, TLS, PKCS #5, PKCS #7, PKCS #11, PKCS #12, S/MIME, X.509 v3 certificates, and other security standards.
This package tracks the Rapid Release channel, which updates frequently.
Left, right or interval censored mixed-effects linear model with autoregressive errors of order p or DEC correlation structure using the type-EM algorithm. The error distribution can be Normal or t-Student. It provides the parameter estimates, the standard errors and prediction of future observations (available only for the normal case). Olivari et all (2021) <doi:10.1080/10543406.2020.1852246>.
This package provides functions for species distribution modeling, calibration and evaluation, ensemble of models, ensemble forecasting and visualization. The package permits to run consistently up to 10 single models on a presence/absences (resp presences/pseudo-absences) dataset and to combine them in ensemble models and ensemble projections. Some bench of other evaluation and visualization tools are also available within the package.
Creating spatially or environmentally separated folds for cross-validation to provide a robust error estimation in spatially structured environments; Investigating and visualising the effective range of spatial autocorrelation in continuous raster covariates and point samples to find an initial realistic distance band to separate training and testing datasets spatially described in Valavi, R. et al. (2019) <doi:10.1111/2041-210X.13107>.
This package provides a matrix of agreement patterns and counts for record pairs is the input for the procedure. An EM algorithm is used to impute plausible values for missing record pairs. A second EM algorithm, incorporating possible correlations between per-field agreement, is used to estimate posterior probabilities that each pair is a true match - i.e. constitutes the same individual.
Convex Partition is a black-box optimisation algorithm for single objective real-parameters functions. The basic principle is to progressively estimate and exploit a regression tree similar to a CART (Classification and Regression Tree) of the objective function. For more details see de Paz (2024) <doi:10.1007/978-3-031-62836-8_3> and Loh (2011) <doi:10.1002/widm.8> .
This package provides tools to fit sample selection models in case of discrete response variables, through a parametric formulation which represents a natural extension of the well-known Heckman selection model are provided in the package. The response variable can be of Bernoulli, Poisson or Negative Binomial type. The sample selection mechanism allows to choose among a Normal, Logistic or Gumbel distribution.
Process and manage the data from the Empatica E4. All functions operate on the EDA data stream, but other streams will be added soon. The Empatica E4 is a wearable physiological monitor made by Empatica (Empatica is not associated with any of this code). You can find more information about the E4 at Empatica's website <https://www.empatica.com/research/e4/>.
The Economic Policy Institute (<https://www.epi.org/>) provides researchers, media, and the public with easily accessible, up-to-date, and comprehensive historical data on the American labor force. It is compiled from Economic Policy Institute analysis of government data sources. Use it to research wages, inequality, and other economic indicators over time and among demographic groups. Data is usually updated monthly.
On import, the XML information is converted to a dataframe that reflects the hierarchical XML structure. Intuitive functions allow to navigate within this transparent XML data structure (without any knowledge of XPath'). flatXML
also provides tools to extract data from the XML into a flat dataframe that can be used to perform statistical operations. It also supports converting dataframes to XML.
Fit linear mixed-effects models using restricted (or residual) maximum likelihood (REML) and with generalized inverse matrices to specify covariance structures for random effects. In particular, the package is suited to fit quantitative genetic mixed models, often referred to as animal models'. Implements the average information algorithm as the main tool to maximize the restricted log-likelihood, but with other algorithms available.