Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Agilent annotation data (chip mgug4104a) assembled using data from public repositories.
Affymetrix mogene11 annotation data (chip mogene11sttranscriptcluster) assembled using data from public repositories.
marr (Maximum Rank Reproducibility) is a nonparametric approach that detects reproducible signals using a maximal rank statistic for high-dimensional biological data. In this R package, we implement functions that measures the reproducibility of features per sample pair and sample pairs per feature in high-dimensional biological replicate experiments. The user-friendly plot functions in this package also plot histograms of the reproducibility of features per sample pair and sample pairs per feature. Furthermore, our approach also allows the users to select optimal filtering threshold values for the identification of reproducible features and sample pairs based on output visualization checks (histograms). This package also provides the subset of data filtered by reproducible features and/or sample pairs.
Bedgraph files generated by Bisulfite pipelines often come in various flavors. Critical downstream step requires summarization of these files into methylation/coverage matrices. This step of data aggregation is done by Methrix, including many other useful downstream functions.
This package provides a collection of datasets to accompany the R package MOFA and illustrate running and analysing MOFA models.
Affymetrix Affymetrix MOE430B Array annotation data (chip moe430b) assembled using data from public repositories.
The package is designed to detect marker genes from Microarray gene expression data sets.
MyVariant.info is a comprehensive aggregation of variant annotation resources. myvariant is a wrapper for querying MyVariant.info services.
Affymetrix Affymetrix Mouse430A_2 Array annotation data (chip mouse430a2) assembled using data from public repositories.
MIRit is an R package that provides several methods for investigating the relationships between miRNAs and genes in different biological conditions. In particular, MIRit allows to explore the functions of dysregulated miRNAs, and makes it possible to identify miRNA-gene regulatory axes that control biological pathways, thus enabling the users to unveil the complexity of miRNA biology. MIRit is an all-in-one framework that aims to help researchers in all the central aspects of an integrative miRNA-mRNA analyses, from differential expression analysis to network characterization.
Mass spectrometry (MS) data backend supporting import and export of MS/MS library spectra from MassBank record files. Different backends are available that allow handling of data in plain MassBank text file format or allow also to interact directly with MassBank SQL databases. Objects from this package are supposed to be used with the Spectra Bioconductor package. This package thus adds MassBank support to the Spectra package.
mbQTL is a statistical R package for simultaneous 16srRNA,16srDNA (microbial) and variant, SNP, SNV (host) relationship, correlation, regression studies. We apply linear, logistic and correlation based statistics to identify the relationships of taxa, genus, species and variant, SNP, SNV in the infected host. We produce various statistical significance measures such as P values, FDR, BC and probability estimation to show significance of these relationships. Further we provide various visualization function for ease and clarification of the results of these analysis. The package is compatible with dataframe, MRexperiment and text formats.
msqrob2 provides a robust linear mixed model framework for assessing differential abundance in MS-based Quantitative proteomics experiments. Our workflows can start from raw peptide intensities or summarised protein expression values. The model parameter estimates can be stabilized by ridge regression, empirical Bayes variance estimation and robust M-estimation. msqrob2's hurde workflow can handle missing data without having to rely on hard-to-verify imputation assumptions, and, outcompetes state-of-the-art methods with and without imputation for both high and low missingness. It builds on QFeature infrastructure for quantitative mass spectrometry data to store the model results together with the raw data and preprocessed data.
The package contains functions for inferece of target gene regulation by miRNA, based on only target gene expression profile.
Store minor allele frequency data from the Phase 1 of the 1000 Genomes Project for the human genome version GRCh38.
MEDIPS was developed for analyzing data derived from methylated DNA immunoprecipitation (MeDIP) experiments followed by sequencing (MeDIP-seq). However, MEDIPS provides functionalities for the analysis of any kind of quantitative sequencing data (e.g. ChIP-seq, MBD-seq, CMS-seq and others) including calculation of differential coverage between groups of samples and saturation and correlation analysis.
The Model-based Analysis of ChIP-Seq (MACS) is a widely used toolkit for identifying transcript factor binding sites. This package is an R wrapper of the lastest MACS3.
Data package containing a collection of multi-sample multi-group scRNA-seq datasets in SingleCellExperiment Bioconductor object format.
Subset of BAM files, including WT_2.bam, Null_2.bam, Resc_2.bam, Input.bam from the "Cfp1" experiment (see Clouaire et al., Genes Dev. 2012). Data is available under ArrayExpress accession numbers E-ERAD-79. Additionally, corresponding subset of peaks called by MACS.
Codelink Mouse Inflammation 16 Bioarray annotation data (chip mi16cod) assembled using data from public repositories.
Affymetrix Affymetrix MOE430A Array annotation data (chip moe430a) assembled using data from public repositories.
MEDME allows the prediction of absolute and relative methylation levels based on measures obtained by MeDIP-microarray experiments.
Simple and efficient workflow for time-course gene expression data, built on publictly available open-source projects hosted on CRAN and bioconductor. moanin provides helper functions for all the steps required for analysing time-course data using functional data analysis: (1) functional modeling of the timecourse data; (2) differential expression analysis; (3) clustering; (4) downstream analysis.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Mouse430A\_2\_probe\_tab.