Using matrix layout to visualize the unique, common, or individual contribution of each predictor (or matrix of predictors) towards explained variation on canonical analysis. These contributions were derived from variance partitioning analysis (VPA) and hierarchical partitioning (HP), applying the algorithm of Lai J., Zou Y., Zhang J., Peres-Neto P. (2022) Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package.Methods in Ecology and Evolution, 13: 782-788 <doi:10.1111/2041-210X.13800>.
This package contains implementation of DecontX (Yang et al. 2020), a decontamination algorithm for single-cell RNA-seq, and DecontPro (Yin et al. 2023), a decontamination algorithm for single cell protein expression data. DecontX is a novel Bayesian method to computationally estimate and remove RNA contamination in individual cells without empty droplet information. DecontPro is a Bayesian method that estimates the level of contamination from ambient and background sources in CITE-seq ADT dataset and decontaminate the dataset.
This package aims at creating a predictive model of regulatory sequences used to score unknown sequences based on the content of DNA motifs, next-generation sequencing (NGS) peaks and signals and other numerical scores of the sequences using supervised classification. The package contains a workflow based on the support vector machine (SVM) algorithm that maps features to sequences, optimize SVM parameters and feature number and creates a model that can be stored and used to score the regulatory potential of unknown sequences.
VeloViz uses each cell’s current observed and predicted future transcriptional states inferred from RNA velocity analysis to build a nearest neighbor graph between cells in the population. Edges are then pruned based on a cosine correlation threshold and/or a distance threshold and the resulting graph is visualized using a force-directed graph layout algorithm. VeloViz can help ensure that relationships between cell states are reflected in the 2D embedding, allowing for more reliable representation of underlying cellular trajectories.
This package provides the data for the gene expression enrichment analysis conducted in the package ABAEnrichment. The package includes three datasets which are derived from the Allen Brain Atlas:
Gene expression data from Human Brain (adults) averaged across donors,
Gene expression data from the Developing Human Brain pooled into five age categories and averaged across donors, and
a developmental effect score based on the Developing Human Brain expression data.
All datasets are restricted to protein coding genes.
This package provides efficient low-level and highly reusable S4 classes for storing ranges of integers, RLE vectors (Run-Length Encoding), and, more generally, data that can be organized sequentially (formally defined as Vector objects), as well as views on these Vector objects. Efficient list-like classes are also provided for storing big collections of instances of the basic classes. All classes in the package use consistent naming and share the same rich and consistent "Vector API" as much as possible.
This package reads Bruker NMR data directories both zipped and unzipped. It provides automated and efficient signal processing for untargeted NMR metabolomics. It is able to interpolate the samples, detect outliers, exclude regions, normalize, detect peaks, align the spectra, integrate peaks, manage metadata and visualize the spectra. After spectra processing, it can apply multivariate analysis on extracted data. Efficient plotting with 1-D data is also available. Basic reading of 1D ACD/Labs exported JDX samples is also available.
The robin-map library is a C++ implementation of a fast hash map and hash set using open-addressing and linear robin hood hashing with backward shift deletion to resolve collisions.
Four classes are provided: tsl::robin_map, tsl::robin_set, tsl::robin_pg_map and tsl::robin_pg_set. The first two are faster and use a power of two growth policy, the last two use a prime growth policy instead and are able to cope better with a poor hash function.
This package implements the deflist class, a read-only list-like object that accesses its elements via a function. The deflist class can be used to model deferred access to data or computations by routing indexed list access to a function. This approach is particularly useful when sequential list-like access to data is required but holding all the data in memory at once is not feasible. The package also provides utilities for memoisation and caching to optimize access to frequently requested elements.
Regression using GMDH algorithms from Prof. Alexey G. Ivakhnenko. Group Method of Data Handling (GMDH), or polynomial neural networks, is a family of inductive algorithms that performs gradually complicated polynomial models and selecting the best solution by an external criterion. In other words, inductive GMDH algorithms give possibility finding automatically interrelations in data, and selecting an optimal structure of model or network. The package includes GMDH Combinatorial, GMDH MIA (Multilayered Iterative Algorithm), GMDH GIA (Generalized Iterative Algorithm) and GMDH Combinatorial with Active Neurons.
This package provides a handy collection of utility functions designed to aid in package development, plotting and scientific research. Package development functionalities includes among others tools such as cross-referencing package imports with the description file, analysis of redundant package imports, editing of the description file and the creation of package badges for GitHub. Some of the other functionalities include automatic package installation and loading, plotting points without overlap, creating nice breaks for plots, overview tables and many more handy utility functions.
An extended version of the nonparametric Bayesian monotonic regression procedure described in Saarela & Arjas (2011) <DOI:10.1111/j.1467-9469.2010.00716.x>, allowing for multiple additive monotonic components in the linear predictor, and time-to-event outcomes through case-base sampling. The extension and its applications, including estimation of absolute risks, are described in Saarela & Arjas (2015) <DOI:10.1111/sjos.12125>. The package also implements the nonparametric ordinal regression model described in Saarela, Rohrbeck & Arjas <DOI:10.1214/22-BA1310>.
Compute detailed and aggregated performance spectrum for event data. The detailed performance spectrum describes the event data in terms of segments, where the performance of each segment is measured and plotted for any occurrences of this segment over time and can be classified, e.g., regarding the overall population. The aggregated performance spectrum visualises the amount of cases of particular performance over time. Denisov, V., Fahland, D., & van der Aalst, W. M. P. (2018) <doi:10.1007/978-3-319-98648-7_9>.
This package provides tools for statistical testing of correlation coefficients through robust permutation method and large sample approximation method. Tailored to different types of correlation coefficients including Pearson correlation coefficient, weighted Pearson correlation coefficient, Spearman correlation coefficient, and Lin's concordance correlation coefficient.The robust permutation test controls type I error under general scenarios when sample size is small and two variables are dependent but uncorrelated. The large sample approximation test generally controls type I error when the sample size is large (>200).
Shadow Document Object Model is a web standard that offers component style and markup encapsulation. It is a critically important piece of the Web Components story as it ensures that a component will work in any environment even if other CSS or JavaScript is at play on the page. Custom HTML tags can't be directly identified with selenium tools, because Selenium doesn't provide any way to deal with shadow elements. Using this plugin you can handle any custom HTML tags.
COMPASS is a statistical framework that enables unbiased analysis of antigen-specific T-cell subsets. COMPASS uses a Bayesian hierarchical framework to model all observed cell-subsets and select the most likely to be antigen-specific while regularizing the small cell counts that often arise in multi-parameter space. The model provides a posterior probability of specificity for each cell subset and each sample, which can be used to profile a subject's immune response to external stimuli such as infection or vaccination.
When testing multiple hypotheses simultaneously, this package provides functionality to calculate a lower bound for the number of correct rejections (as a function of the number of rejected hypotheses), which holds simultaneously -with high probability- for all possible number of rejections. As a special case, a lower bound for the total number of false null hypotheses can be inferred. Dependent test statistics can be handled for multiple tests of associations. For independent test statistics, it is sufficient to provide a list of p-values.
This package provides userspace components for the InfiniBand subsystem of the Linux kernel. Specifically it contains userspace libraries for the following device nodes:
/dev/infiniband/uverbsX(libibverbs)/dev/infiniband/rdma_cm(librdmacm)/dev/infiniband/umadX(libibumad)
The following service daemons are also provided:
srp_daemon(for theib_srpkernel module)iwpmd(for iWARP kernel providers)ibacm(for InfiniBand communication management assistant)
This package provides a color palette generator inspired by American politics, with colors ranging from blue on the left to gray in the middle and red on the right. A variety of palettes allow for a range of applications from brief discrete scales (e.g., three colors for Democrats, Independents, and Republicans) to continuous interpolated arrays including dozens of shades graded from blue (left) to red (right). This package greatly benefitted from building on the source code (with permission) from Ram and Wickham (2015).
This package creates an area-proportional Venn diagram of 2 or 3 circles. BioVenn is the only R package that can automatically generate an accurate area-proportional Venn diagram by having only lists of (biological) identifiers as input. Also offers the option to map Entrez and/or Affymetrix IDs to Ensembl IDs. In SVG mode, text and numbers can be dragged and dropped. Based on the BioVenn web interface available at <https://www.biovenn.nl>. Hulsen (2021) <doi:10.3233/DS-210032>.
It allows running Dynare program from base R, R Markdown and Quarto. Dynare is a software platform for handling a wide class of economic models, in particular dynamic stochastic general equilibrium ('DSGE') and overlapping generations ('OLG') models. This package does not only integrate R and Dynare but also serves as a Dynare Knit-Engine for knitr package. The package requires Dynare (<https://www.dynare.org/>) and Octave (<https://www.octave.org/download.html>). Write all your Dynare commands in R or R Markdown chunk.
This package provides read and write access to data and metadata from the DataONE network <https://www.dataone.org> of data repositories. Each DataONE repository implements a consistent repository application programming interface. Users call methods in R to access these remote repository functions, such as methods to query the metadata catalog, get access to metadata for particular data packages, and read the data objects from the data repository. Users can also insert and update data objects on repositories that support these methods.
This package provides a convenient framework to simulate, test, power, and visualize data for differential expression studies with lognormal or negative binomial outcomes. Supported designs are two-sample comparisons of independent or dependent outcomes. Power may be summarized in the context of controlling the per-family error rate or family-wise error rate. Negative binomial methods are described in Yu, Fernandez, and Brock (2017) <doi:10.1186/s12859-017-1648-2> and Yu, Fernandez, and Brock (2020) <doi:10.1186/s12859-020-3541-7>.
Joint analysis and imputation of incomplete data in the Bayesian framework, using (generalized) linear (mixed) models and extensions there of, survival models, or joint models for longitudinal and survival data, as described in Erler, Rizopoulos and Lesaffre (2021) <doi:10.18637/jss.v100.i20>. Incomplete covariates, if present, are automatically imputed. The package performs some preprocessing of the data and creates a JAGS model, which will then automatically be passed to JAGS <https://mcmc-jags.sourceforge.io/> with the help of the package rjags'.