Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Reading and writing BibTeX files using data frames in R sessions.
This package implements regression models for binary data on the absolute risk scale. These models are applicable to cohort and population-based case-control data.
Create randomizations for block random clinical trials. Can also produce a pdf file of randomization cards.
This package provides a convenience package for use while drafting code. It facilitates making stand-out comment lines decorated with bands of characters. The input text strings are converted into R comment lines, suitably formatted. These are then displayed in a console window and, if possible, automatically transferred to a clipboard ready for pasting into an R script. Designed to save time when drafting R scripts that will need to be navigated and maintained by other programmers.
Computes the hazard rate estimate as described by Nieto-Barajas & Walker (2002), Nieto-Barajas (2003), Nieto-Barajas & Walker (2007) and Nieto-Barajas & Yin (2008).
This package provides a beginners toolbox to help those in ecology who want to deepen their understanding or utilize Bioacoustics in their work. The package has a number of utilizations from calculating frequency from waveform, performing operations in dB, and determining acoustic range of recorders. The majority of this package is based on key concepts learned from the K. Lisa Yang Center for Conservation Bioacoustics at Cornell University and their associated course: Introduction to Bioacoustics course. More information can be found within the walk through vignettes at <https://github.com/MattyD797/bioSNR/tree/main/vignettes>.
Draw horizontal histograms, color scattered points by 3rd dimension, enhance date- and log-axis plots, zoom in X11 graphics, trace errors and warnings, use the unit hydrograph in a linear storage cascade, convert lists to data.frames and arrays, fit multiple functions.
Full Bayesian estimation of Multidimensional Generalized Graded Unfolding Model (MGGUM) using rstan (See Stan Development Team (2020) <https://mc-stan.org/>). Functions are provided for estimation, result extraction, model fit statistics, and plottings.
This package performs block diagonal covariance matrix detection using singular vectors (BD-SVD), which can be extended to hierarchical variable clustering (HC-SVD). The methods are described in Bauer (2024) <doi:10.1080/10618600.2024.2422985> and Bauer (202X) <doi:10.48550/arXiv.2308.06820>.
This package implements Bayesian Lasso regression using efficient Gibbs sampling algorithms, including modified versions of the Hans and Parkâ Casella (PC) samplers. Includes functions for working with the Lasso distribution, such as its density, cumulative distribution, quantile, and random generation functions, along with moment calculations. Also includes a function to compute the Mills ratio. Designed for sparse linear models and suitable for high-dimensional regression problems.
This package implements the bolasso algorithm for consistent variable selection and estimation accuracy. Includes support for many parallel backends via the future package. For details see: Bach (2008), Bolasso: model consistent Lasso estimation through the bootstrap', <doi:10.48550/arXiv.0804.1302>.
This package provides tools for fitting Bayesian single index models with flexible choices of priors for both the index and the link function. The package implements model estimation and posterior inference using efficient MCMC algorithms built on the nimble framework, allowing users to specify, extend, and simulate models in a unified and reproducible manner. The following methods are implemented in the package: Antoniadis et al. (2004) <https://www.jstor.org/stable/24307224>, Wang (2009) <doi:10.1016/j.csda.2008.12.010>, Choi et al. (2011) <c>, Dhara et al. (2019) <doi:10.1214/19-BA1170>, McGee et al. (2023) <doi:10.1111/biom.13569>.
Tests the parallel regression assumption wit the brant test by Brant (1990) <doi: 10.2307/2532457> for ordinal logit models generated with the function polr() from the package MASS'.
Generates Monte Carlo confidence intervals for standardized regression coefficients (beta) and other effect sizes, including multiple correlation, semipartial correlations, improvement in R-squared, squared partial correlations, and differences in standardized regression coefficients, for models fitted by lm(). betaMC combines ideas from Monte Carlo confidence intervals for the indirect effect (Pesigan and Cheung, 2024 <doi:10.3758/s13428-023-02114-4>) and the sampling covariance matrix of regression coefficients (Dudgeon, 2017 <doi:10.1007/s11336-017-9563-z>) to generate confidence intervals effect sizes in regression.
It makes the creation of networks from sequences of RNA, with this is done the abstraction of characteristics of these networks with a methodology of threshold for the purpose of making a classification between the classes of the sequences. There are four data present in the BASiNET package, "sequences", "sequences2", "sequences-predict" and "sequences2-predict" with 11, 10, 11 and 11 sequences respectively. These sequences were taken from the data set used in the article (LI, Aimin; ZHANG, Junying; ZHOU, Zhongyin, 2014) <doi:10.1186/1471-2105-15-311>, these sequences are used to run examples. The BASiNET was published on Nucleic Acids Research, (ITO, Eric; KATAHIRA, Isaque; VICENTE, Fábio; PEREIRA, Felipe; LOPES, Fabrà cio, 2018) <doi:10.1093/nar/gky462>.
This package provides a set of user-friendly functions designed to fill gaps in existing introductory biostatistics R tools, making it easier for newcomers to perform basic biostatistical analyses without needing advanced programming skills. The methods implemented in this package are based on the works: Connor (1987) <doi:10.2307/2531961> Fleiss, Levin, & Paik (2013, ISBN:978-1-118-62561-3) Levin & Chen (1999) <doi:10.1080/00031305.1999.10474431> McNemar (1947) <doi:10.1007/BF02295996>.
This package provides tools to analyze binary graph objects.
Perform mediation analysis in the presence of high-dimensional mediators based on the potential outcome framework. Bayesian Mediation Analysis (BAMA), developed by Song et al (2019) <doi:10.1111/biom.13189> and Song et al (2020) <doi:10.48550/arXiv.2009.11409>, relies on two Bayesian sparse linear mixed models to simultaneously analyze a relatively large number of mediators for a continuous exposure and outcome assuming a small number of mediators are truly active. This sparsity assumption also allows the extension of univariate mediator analysis by casting the identification of active mediators as a variable selection problem and applying Bayesian methods with continuous shrinkage priors on the effects.
Using numeric or raster data, this package contains functions to calculate: complete water balance, bioclimatic balance, bioclimatic intensities, reports for individual locations, multi-layered rasters for spatial analysis.
Following Arroyo-Maté-Roque (2006), the function calculates the distance between rows or columns of the dataset using the generalized Minkowski metric as described by Ichino-Yaguchi (1994). The distance measure gives more weight to differences between quartiles than to differences between extremes, making it less sensitive to outliers. Further,the function calculates the silhouette width (Rousseeuw 1987) for different numbers of clusters and selects the number of clusters that maximizes the average silhouette width, unless a specific number of clusters is provided by the user. The approach implemented in this package is based on the following publications: Rousseeuw (1987) <doi:10.1016/0377-0427(87)90125-7>; Ichino-Yaguchi (1994) <doi:10.1109/21.286391>; Arroyo-Maté-Roque (2006) <doi:10.1007/3-540-34416-0_7>.
Fits Cox model via stochastic gradient descent. This implementation avoids computational instability of the standard Cox Model when dealing large datasets. Furthermore, it scales up with large datasets that do not fit the memory. It also handles large sparse datasets using proximal stochastic gradient descent algorithm. For more details about the method, please see Aliasghar Tarkhan and Noah Simon (2020) <arXiv:2003.00116v2>.
This package provides functions for calculating biochemical methane potential (BMP) from laboratory measurements and other types of data processing and prediction useful for biogas research. Raw laboratory measurements for diverse methods (volumetric, manometric, gravimetric, gas density) can be processed to calculate BMP. Theoretical maximum BMP or methane or biogas yield can be predicted from various measures of substrate composition. Molar mass and calculated oxygen demand (COD') can be determined from a chemical formula. Measured gas volume can be corrected for water vapor and to standard (or user-defined) temperature and pressure. Gas quantity can be converted between volume, mass, and moles. A function for planning BMP experiments can consider multiple constraints in suggesting substrate or inoculum quantities, and check for problems. Inoculum and substrate mass can be determined for planning BMP experiments. Finally, a set of first-order models can be fit to measured methane production rate or cumulative yield in order to extract estimates of ultimate yield and kinetic constants. See Hafner et al. (2018) <doi:10.1016/j.softx.2018.06.005> for details. OBA is a web application that provides access to some of the package functionality: <https://biotransformers.shinyapps.io/oba1/>. The Standard BMP Methods website documents the calculations in detail: <https://www.dbfz.de/en/BMP>.
Render SVG as interactive figures to display contextual information, with selectable and clickable user interface elements. These figures can be seamlessly integrated into rmarkdown and Quarto documents, as well as shiny applications, allowing manipulation of elements and reporting actions performed on them. Additional features include pan, zoom in/out functionality, and the ability to export the figures in SVG or PNG formats.
This package provides a wrapper around the Blat command line SMTP mailer for Windows. Blat is public domain software, but be sure to read the license before use. It can be found at the Blat website http://www.blat.net.