This package implements the Factor-Augmented Clustering Tree (FACT) algorithm for clustering time series data. The method constructs a classification tree where splits are determined by covariates, and the splitting criterion is based on a group factor model representation of the time series within each node. Both threshold-based and permutation-based tests are supported for splitting decisions, with an option for parallel computation. For methodological details, see Hu, Li, Luo, and Wang (2025, in preparation), Factor-Augmented Clustering Tree for Time Series.
Regression using GMDH algorithms from Prof. Alexey G. Ivakhnenko. Group Method of Data Handling (GMDH), or polynomial neural networks, is a family of inductive algorithms that performs gradually complicated polynomial models and selecting the best solution by an external criterion. In other words, inductive GMDH algorithms give possibility finding automatically interrelations in data, and selecting an optimal structure of model or network. The package includes GMDH Combinatorial, GMDH MIA (Multilayered Iterative Algorithm), GMDH GIA (Generalized Iterative Algorithm) and GMDH Combinatorial with Active Neurons.
This package provides a handy collection of utility functions designed to aid in package development, plotting and scientific research. Package development functionalities includes among others tools such as cross-referencing package imports with the description file, analysis of redundant package imports, editing of the description file and the creation of package badges for GitHub. Some of the other functionalities include automatic package installation and loading, plotting points without overlap, creating nice breaks for plots, overview tables and many more handy utility functions.
An extended version of the nonparametric Bayesian monotonic regression procedure described in Saarela & Arjas (2011) <DOI:10.1111/j.1467-9469.2010.00716.x>, allowing for multiple additive monotonic components in the linear predictor, and time-to-event outcomes through case-base sampling. The extension and its applications, including estimation of absolute risks, are described in Saarela & Arjas (2015) <DOI:10.1111/sjos.12125>. The package also implements the nonparametric ordinal regression model described in Saarela, Rohrbeck & Arjas <DOI:10.1214/22-BA1310>.
This package provides tools for statistical testing of correlation coefficients through robust permutation method and large sample approximation method. Tailored to different types of correlation coefficients including Pearson correlation coefficient, weighted Pearson correlation coefficient, Spearman correlation coefficient, and Lin's concordance correlation coefficient.The robust permutation test controls type I error under general scenarios when sample size is small and two variables are dependent but uncorrelated. The large sample approximation test generally controls type I error when the sample size is large (>200).
Compute detailed and aggregated performance spectrum for event data. The detailed performance spectrum describes the event data in terms of segments, where the performance of each segment is measured and plotted for any occurrences of this segment over time and can be classified, e.g., regarding the overall population. The aggregated performance spectrum visualises the amount of cases of particular performance over time. Denisov, V., Fahland, D., & van der Aalst, W. M. P. (2018) <doi:10.1007/978-3-319-98648-7_9>.
Shadow Document Object Model is a web standard that offers component style and markup encapsulation. It is a critically important piece of the Web Components story as it ensures that a component will work in any environment even if other CSS or JavaScript is at play on the page. Custom HTML tags can't be directly identified with selenium tools, because Selenium doesn't provide any way to deal with shadow elements. Using this plugin you can handle any custom HTML tags.
BANDITS is a Bayesian hierarchical model for detecting differential splicing of genes and transcripts, via DTU (differential transcript usage), between two or more conditions. The method uses a Bayesian hierarchical framework, which allows for sample specific proportions in a Dirichlet-Multinomial model, and samples the allocation of fragments to the transcripts. Parameters are inferred via MCMC (Markov chain Monte Carlo) techniques and a DTU test is performed via a multivariate Wald test on the posterior densities for the average relative abundance of transcripts.
This package implements beta regression for modeling beta-distributed dependent variables on the open unit interval (0, 1), e.g., rates and proportions, see Cribari-Neto and Zeileis (2010) <doi:10.18637/jss.v034.i02>. Moreover, extended-support beta regression models can accommodate dependent variables with boundary observations at 0 and/or 1. For the classical beta regression model, alternative specifications are provided: Bias-corrected and bias-reduced estimation, finite mixture models, and recursive partitioning for beta regression, see <doi:10.18637/jss.v048.i11>.
This package provides support for the foreach looping construct. foreach is an idiom that allows for iterating over elements in a collection, without the use of an explicit loop counter. This package in particular is intended to be used for its return value, rather than for its side effects. In that sense, it is similar to the standard lapply function, but doesn't require the evaluation of a function. Using foreach without side effects also facilitates executing the loop in parallel.
This package provides a color palette generator inspired by American politics, with colors ranging from blue on the left to gray in the middle and red on the right. A variety of palettes allow for a range of applications from brief discrete scales (e.g., three colors for Democrats, Independents, and Republicans) to continuous interpolated arrays including dozens of shades graded from blue (left) to red (right). This package greatly benefitted from building on the source code (with permission) from Ram and Wickham (2015).
This package creates an area-proportional Venn diagram of 2 or 3 circles. BioVenn is the only R package that can automatically generate an accurate area-proportional Venn diagram by having only lists of (biological) identifiers as input. Also offers the option to map Entrez and/or Affymetrix IDs to Ensembl IDs. In SVG mode, text and numbers can be dragged and dropped. Based on the BioVenn web interface available at <https://www.biovenn.nl>. Hulsen (2021) <doi:10.3233/DS-210032>.
This package provides a convenient framework to simulate, test, power, and visualize data for differential expression studies with lognormal or negative binomial outcomes. Supported designs are two-sample comparisons of independent or dependent outcomes. Power may be summarized in the context of controlling the per-family error rate or family-wise error rate. Negative binomial methods are described in Yu, Fernandez, and Brock (2017) <doi:10.1186/s12859-017-1648-2> and Yu, Fernandez, and Brock (2020) <doi:10.1186/s12859-020-3541-7>.
This package provides read and write access to data and metadata from the DataONE network <https://www.dataone.org> of data repositories. Each DataONE repository implements a consistent repository application programming interface. Users call methods in R to access these remote repository functions, such as methods to query the metadata catalog, get access to metadata for particular data packages, and read the data objects from the data repository. Users can also insert and update data objects on repositories that support these methods.
It allows running Dynare program from base R, R Markdown and Quarto. Dynare is a software platform for handling a wide class of economic models, in particular dynamic stochastic general equilibrium ('DSGE') and overlapping generations ('OLG') models. This package does not only integrate R and Dynare but also serves as a Dynare Knit-Engine for knitr package. The package requires Dynare (<https://www.dynare.org/>) and Octave (<https://www.octave.org/download.html>). Write all your Dynare commands in R or R Markdown chunk.
This package provides tools for training and analysing fairness-aware gated neural networks for subgroup-aware prediction and interpretation in clinical datasets. Methods draw on prior work in mixture-of-experts neural networks by Jordan and Jacobs (1994) <doi:10.1007/978-1-4471-2097-1_113>, fairness-aware learning by Hardt, Price, and Srebro (2016) <doi:10.48550/arXiv.1610.02413>, and personalised treatment prediction for depression by Iniesta, Stahl, and McGuffin (2016) <doi:10.1016/j.jpsychires.2016.03.016>.
Joint analysis and imputation of incomplete data in the Bayesian framework, using (generalized) linear (mixed) models and extensions there of, survival models, or joint models for longitudinal and survival data, as described in Erler, Rizopoulos and Lesaffre (2021) <doi:10.18637/jss.v100.i20>. Incomplete covariates, if present, are automatically imputed. The package performs some preprocessing of the data and creates a JAGS model, which will then automatically be passed to JAGS <https://mcmc-jags.sourceforge.io/> with the help of the package rjags'.
The lognormal distribution (Limpert et al. (2001) <doi:10.1641/0006-3568(2001)051%5B0341:lndats%5D2.0.co;2>) can characterize uncertainty that is bounded by zero. This package provides estimation of distribution parameters, computation of moments and other basic statistics, and an approximation of the distribution of the sum of several correlated lognormally distributed variables (Lo 2013 <doi:10.12988/ams.2013.39511>) and the approximation of the difference of two correlated lognormally distributed variables (Lo 2012 <doi:10.1155/2012/838397>).
This package provides tools for the calculation of effect sizes (standardised mean difference) and mean difference in pre-post controlled studies, including robust imputation of missing variances (standard deviation of changes) and correlations (Pearson correlation coefficient). The main function metacor_dual() implements several methods for imputing missing standard deviation of changes or Pearson correlation coefficient, and generates transparent imputation reports. Designed for meta-analyses with incomplete summary statistics. For details on the methods, see Higgins et al. (2023) and Fu et al. (2013).
This package provides a method that analyzes quality control metrics from multi-sample genomic sequencing studies and nominates poor quality samples for exclusion. Per sample quality control data are transformed into z-scores and aggregated. The distribution of aggregated z-scores are modelled using parametric distributions. The parameters of the optimal model, selected either by goodness-of-fit statistics or user-designation, are used for outlier nomination. Two implementations of the Cosine Similarity Outlier Detection algorithm are provided with flexible parameters for dataset customization.
Displays provenance graphically for provenance collected by the rdt or rdtLite packages, or other tools providing compatible PROV JSON output. The exact format of the JSON created by rdt and rdtLite is described in <https://github.com/End-to-end-provenance/ExtendedProvJson>. More information about rdtLite and associated tools is available at <https://github.com/End-to-end-provenance/> and Barbara Lerner, Emery Boose, and Luis Perez (2018), Using Introspection to Collect Provenance in R, Informatics, <doi: 10.3390/informatics5010012>.
The algorithm combines the most predictive variable, such as count of the main International Classification of Diseases (ICD) codes, and other Electronic Health Record (EHR) features (e.g. health utilization and processed clinical note data), to obtain a score for accurate risk prediction and disease classification. In particular, it normalizes the surrogate to resemble gaussian mixture and leverages the remaining features through random corruption denoising. Background and details about the method can be found at Yu et al. (2018) <doi:10.1093/jamia/ocx111>.
We build an Susceptible-Infectious-Recovered (SIR) model where the rate of infection is the sum of the household rate and the community rate. We estimate the posterior distribution of the parameters using the Metropolis algorithm. Further details may be found in: F Scott Dahlgren, Ivo M Foppa, Melissa S Stockwell, Celibell Y Vargas, Philip LaRussa, Carrie Reed (2021) "Household transmission of influenza A and B within a prospective cohort during the 2013-2014 and 2014-2015 seasons" <doi:10.1002/sim.9181>.
Cluster-independent method based on topology structure of gene co-expression network for identifying feature gene sets, extracting cellular subpopulations, and elucidating intrinsic relationships among these subpopulations. Without prior cell clustering, SifiNet circumvents potential inaccuracies in clustering that may influence subsequent analyses. This method is introduced in Qi Gao, Zhicheng Ji, Liuyang Wang, Kouros Owzar, Qi-Jing Li, Cliburn Chan, Jichun Xie "SifiNet: a robust and accurate method to identify feature gene sets and annotate cells" (2024) <doi:10.1093/nar/gkae307>.