_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-zetadiv 1.3.0
Propagated dependencies: r-vegan@2.7-2 r-scam@1.2-20 r-nnls@1.6 r-mgcv@1.9-4 r-glm2@1.2.1 r-geodist@0.1.1 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/z.scm (guix-cran packages z)
Home page: https://cran.r-project.org/package=zetadiv
Licenses: GPL 3
Synopsis: Functions to Compute Compositional Turnover Using Zeta Diversity
Description:

This package provides functions to compute compositional turnover using zeta-diversity, the number of species shared by multiple assemblages. The package includes functions to compute zeta-diversity for a specific number of assemblages and to compute zeta-diversity for a range of numbers of assemblages. It also includes functions to explain how zeta-diversity varies with distance and with differences in environmental variables between assemblages, using generalised linear models, linear models with negative constraints, generalised additive models,shape constrained additive models, and I-splines.

r-epivizr 2.40.0
Propagated dependencies: r-s4vectors@0.48.0 r-iranges@2.44.0 r-genomicranges@1.62.0 r-genomeinfodb@1.46.0 r-epivizrserver@1.38.0 r-epivizrdata@1.38.0 r-bumphunter@1.52.0
Channel: guix-bioc
Location: guix-bioc/packages/e.scm (guix-bioc packages e)
Home page: https://bioconductor.org/packages/epivizr
Licenses: Artistic License 2.0
Synopsis: R Interface to epiviz web app
Description:

This package provides connections to the epiviz web app (http://epiviz.cbcb.umd.edu) for interactive visualization of genomic data. Objects in R/bioc interactive sessions can be displayed in genome browser tracks or plots to be explored by navigation through genomic regions. Fundamental Bioconductor data structures are supported (e.g., GenomicRanges and RangedSummarizedExperiment objects), while providing an easy mechanism to support other data structures (through package epivizrData). Visualizations (using d3.js) can be easily added to the web app as well.

r-bayesfm 0.1.7
Dependencies: gfortran@14.3.0
Propagated dependencies: r-plyr@1.8.9 r-gridextra@2.3 r-ggplot2@4.0.1 r-coda@0.19-4.1 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BayesFM
Licenses: GPL 3
Synopsis: Bayesian Inference for Factor Modeling
Description:

Collection of procedures to perform Bayesian analysis on a variety of factor models. Currently, it includes: "Bayesian Exploratory Factor Analysis" (befa) from G. Conti, S. Frühwirth-Schnatter, J.J. Heckman, R. Piatek (2014) <doi:10.1016/j.jeconom.2014.06.008>, an approach to dedicated factor analysis with stochastic search on the structure of the factor loading matrix. The number of latent factors, as well as the allocation of the manifest variables to the factors, are not fixed a priori but determined during MCMC sampling.

r-censobr 0.5.0
Propagated dependencies: r-rlang@1.1.6 r-glue@1.8.0 r-fs@1.6.6 r-duckdb@1.4.2 r-dplyr@1.1.4 r-curl@7.0.0 r-cli@3.6.5 r-checkmate@2.3.3 r-arrow@22.0.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/ipeaGIT/censobr
Licenses: Expat
Synopsis: Download Data from Brazil's Population Census
Description:

Easy access to data from Brazil's population censuses. The package provides a simple and efficient way to download and read the data sets and the documentation of all the population censuses taken in and after 1960 in the country. The package is built on top of the Arrow platform <https://arrow.apache.org/docs/r/>, which allows users to work with larger-than-memory census data using dplyr familiar functions. <https://arrow.apache.org/docs/r/articles/arrow.html#analyzing-arrow-data-with-dplyr>.

r-gfdsurv 0.1.1
Propagated dependencies: r-tippy@0.1.0 r-survminer@0.5.1 r-survival@3.8-3 r-shinythemes@1.2.0 r-shinyjs@2.1.0 r-shiny@1.11.1 r-plyr@1.8.9 r-mass@7.3-65 r-magic@1.6-1 r-gridextra@2.3
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/PhilippSteinhauer/GFDsurv
Licenses: GPL 3+
Synopsis: Tests for Survival Data in General Factorial Designs
Description:

Implemented are three Wald-type statistic and respective permuted versions for null hypotheses formulated in terms of cumulative hazard rate functions, medians and the concordance measure, respectively, in the general framework of survival factorial designs with possibly heterogeneous survival and/or censoring distributions, for crossed designs with an arbitrary number of factors and nested designs with up to three factors. Ditzhaus, Dobler and Pauly (2020) <doi:10.1177/0962280220980784> Ditzhaus, Janssen, Pauly (2020) <arXiv: 2004.10818v2> Dobler and Pauly (2019) <doi:10.1177/0962280219831316>.

r-geometa 0.9.3
Propagated dependencies: r-xml@3.99-0.20 r-readr@2.1.6 r-r6@2.6.1 r-keyring@1.4.1 r-jsonlite@2.0.0 r-httr@1.4.7 r-crayon@1.5.3
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/eblondel/geometa/wiki
Licenses: Expat
Synopsis: Tools for Reading and Writing ISO/OGC Geographic Metadata
Description:

This package provides facilities to read, write and validate geographic metadata defined with ISO TC211 / OGC ISO geographic information metadata standards, and encoded using the ISO 19139 and ISO 19115-3 (XML) standard technical specifications. This includes ISO 19110 (Feature cataloguing), 19115 (dataset metadata), 19119 (service metadata) and 19136 (GML). Other interoperable schemas from the OGC are progressively supported as well, such as the Sensor Web Enablement (SWE) Common Data Model, the OGC GML Coverage Implementation Schema (GMLCOV), or the OGC GML Referenceable Grid (GMLRGRID).

r-latbias 1.0.0
Propagated dependencies: r-units@1.0-0 r-tidyr@1.3.1 r-terra@1.8-86 r-sp@2.2-0 r-sf@1.0-23 r-reshape2@1.4.5 r-rcolorbrewer@1.1-3 r-psych@2.5.6 r-ggplot2@4.0.1 r-geosphere@1.5-20 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://github.com/pierredenelle/latbias
Licenses: GPL 2+
Synopsis: Calculate the Latitudinal Bias Index
Description:

Studies that report shifts in species distributions may be biased by the shape of the study area. The main functionality of this package is to calculate the Latitudinal Bias Index (LBI) for any given shape. The LBI is bounded between +1 (100% probability to exclusively record latitudinal shifts, i.e., range shifts data sampled along a perfectly South-North oriented straight line) and -1 (100% probability to exclusively record longitudinal shifts, i.e., range shifts data sampled along a perfectly East-West oriented straight line).

r-nftbart 2.3
Propagated dependencies: r-survival@3.8-3 r-rcpp@1.1.0 r-nnet@7.3-20 r-lattice@0.22-7
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=nftbart
Licenses: GPL 2+
Synopsis: Nonparametric Failure Time Bayesian Additive Regression Trees
Description:

Nonparametric Failure Time (NFT) Bayesian Additive Regression Trees (BART): Time-to-event Machine Learning with Heteroskedastic Bayesian Additive Regression Trees (HBART) and Low Information Omnibus (LIO) Dirichlet Process Mixtures (DPM). An NFT BART model is of the form Y = mu + f(x) + sd(x) E where functions f and sd have BART and HBART priors, respectively, while E is a nonparametric error distribution due to a DPM LIO prior hierarchy. See the following for a description of the model at <doi:10.1111/biom.13857>.

r-sdcnway 1.0.1
Propagated dependencies: r-rdpack@2.6.4 r-plyr@1.8.9 r-mass@7.3-65 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SDCNway
Licenses: GPL 2
Synopsis: Tools to Evaluate Disclosure Risk
Description:

This package provides tools for calculating disclosure risk measures for microdata, including record-level and file-level measures. The record-level disclosure risk is estimated primarily using exhaustive tabulation. The file-level disclosure risk is estimated by fitting loglinear models on the observed sample counts in cells formed by key variables and their interactions. Funded by the National Center for Education Statistics. See Skinner and Shlomo (2008) <doi:10.1198/016214507000001328> for a description of the file-level risk measures and the loglinear model approach.

r-simcomp 3.6
Propagated dependencies: r-mvtnorm@1.3-3 r-multcomp@1.4-29 r-mratios@1.4.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SimComp
Licenses: GPL 2+ GPL 3+
Synopsis: Simultaneous Comparisons for Multiple Endpoints
Description:

Simultaneous tests and confidence intervals are provided for one-way experimental designs with one or many normally distributed, primary response variables (endpoints). Differences (Hasler and Hothorn, 2011 <doi:10.2202/1557-4679.1258>) or ratios (Hasler and Hothorn, 2012 <doi:10.1080/19466315.2011.633868>) of means can be considered. Various contrasts can be chosen, unbalanced sample sizes are allowed as well as heterogeneous variances (Hasler and Hothorn, 2008 <doi:10.1002/bimj.200710466>) or covariance matrices (Hasler, 2014 <doi:10.1515/ijb-2012-0015>).

r-wsjplot 0.1.0
Propagated dependencies: r-stringr@1.6.0 r-scales@1.4.0 r-magrittr@2.0.4 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/w.scm (guix-cran packages w)
Home page: https://cran.r-project.org/package=wsjplot
Licenses: Expat
Synopsis: Style Time Series Plots Like the Wall Street Journal
Description:

Easily override the default visual choices in ggplot2 to make your time series plots look more like the Wall Street Journal. Specific theme design choices include omitting x-axis grid lines and displaying sparse light grey y-axis grid lines. Additionally, this allows to label the y-axis scales with your units only displayed on the top-most number, while also removing the bottom most number (unless specifically overridden). The goal is visual simplicity, because who has time to waste looking at a cluttered graph?

r-ccfindr 1.30.0
Dependencies: gsl@2.8
Propagated dependencies: r-ape@5.8-1 r-gtools@3.9.5 r-irlba@2.3.5.1 r-matrix@1.7-4 r-rcolorbrewer@1.1-3 r-rcpp@1.1.0 r-rcppeigen@0.3.4.0.2 r-rdpack@2.6.4 r-rmpi@0.7-3.3 r-rtsne@0.17 r-s4vectors@0.48.0 r-singlecellexperiment@1.32.0 r-summarizedexperiment@1.40.0
Channel: guix
Location: gnu/packages/bioconductor.scm (gnu packages bioconductor)
Home page: https://dx.doi.org/10.26508/lsa.201900443
Licenses: GPL 2+
Synopsis: Cancer clone finder
Description:

This package provides a collection of tools for cancer genomic data clustering analyses, including those for single cell RNA-seq. Cell clustering and feature gene selection analysis employ Bayesian (and maximum likelihood) non-negative matrix factorization (NMF) algorithm. Input data set consists of RNA count matrix, gene, and cell bar code annotations. Analysis outputs are factor matrices for multiple ranks and marginal likelihood values for each rank. The package includes utilities for downstream analyses, including meta-gene identification, visualization, and construction of rank-based trees for clusters.

r-littler 0.3.21
Dependencies: icu4c@73.1 libdeflate@1.19 zlib@1.3.1
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://github.com/eddelbuettel/littler
Licenses: GPL 2+
Synopsis: R at the command-line via r
Description:

This package provides a scripting and command-line front-end is provided by r (aka littler) as a lightweight binary wrapper around the GNU R language and environment for statistical computing and graphics. While R can be used in batch mode, the r binary adds full support for both shebang-style scripting (i.e. using a hash-mark-exclamation-path expression as the first line in scripts) as well as command-line use in standard pipelines. In other words, r provides the R language without the environment.

r-fscache 1.0.5
Propagated dependencies: r-chk@0.10.0 r-lgr@0.5.0 r-lifecycle@1.0.4 r-r-utils@2.13.0 r-r6@2.6.1 r-stringi@1.8.7
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://gitlab.com/cnrgh/databases/r-fscache
Licenses: AGPL 3
Synopsis: File system cache
Description:

This package manages a file system cache. Regular files can be moved or copied to the cache folder. Sub-folders can be created in order to organize the files. Files can be located inside the cache using a glob function. Text contents can be easily stored in and retrieved from the cache using dedicated functions. It can be used for an application or a package, as a global cache, or as a per-user cache, in which case the standard OS user cache folder will be used.

r-averisk 1.0.3
Propagated dependencies: r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://cran.r-project.org/package=averisk
Licenses: CC0
Synopsis: Calculation of Average Population Attributable Fractions and Confidence Intervals
Description:

Average population attributable fractions are calculated for a set of risk factors (either binary or ordinal valued) for both prospective and case- control designs. Confidence intervals are found by Monte Carlo simulation. The method can be applied to either prospective or case control designs, provided an estimate of disease prevalence is provided. In addition to an exact calculation of AF, an approximate calculation, based on randomly sampling permutations has been implemented to ensure the calculation is computationally tractable when the number of risk factors is large.

r-baymedr 0.1.1
Propagated dependencies: r-stringr@1.6.0 r-rlang@1.1.6
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/maxlinde/baymedr
Licenses: GPL 3
Synopsis: Computation of Bayes Factors for Common Biomedical Designs
Description:

BAYesian inference for MEDical designs in R. Functions for the computation of Bayes factors for common biomedical research designs. Implemented are functions to test the equivalence (equiv_bf), non-inferiority (infer_bf), and superiority (super_bf) of an experimental group compared to a control group on a continuous outcome measure. Bayes factors for these three tests can be computed based on raw data (x, y) or summary statistics (n_x, n_y, mean_x, mean_y, sd_x, sd_y [or ci_margin and ci_level]).

r-bayesgp 0.1.3
Propagated dependencies: r-tmbstan@1.0.91 r-tmb@1.9.18 r-sfsmisc@1.1-23 r-rstan@2.32.7 r-rcppeigen@0.3.4.0.2 r-numderiv@2016.8-1.1 r-matrix@1.7-4 r-laplacesdemon@16.1.6 r-fda@6.3.0 r-aghq@0.4.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BayesGP
Licenses: GPL 3+
Synopsis: Efficient Implementation of Gaussian Process in Bayesian Hierarchical Models
Description:

This package implements Bayesian hierarchical models with flexible Gaussian process priors, focusing on Extended Latent Gaussian Models and incorporating various Gaussian process priors for Bayesian smoothing. Computations leverage finite element approximations and adaptive quadrature for efficient inference. Methods are detailed in Zhang, Stringer, Brown, and Stafford (2023) <doi:10.1177/09622802221134172>; Zhang, Stringer, Brown, and Stafford (2024) <doi:10.1080/10618600.2023.2289532>; Zhang, Brown, and Stafford (2023) <doi:10.48550/arXiv.2305.09914>; and Stringer, Brown, and Stafford (2021) <doi:10.1111/biom.13329>.

r-circlus 0.0.2
Propagated dependencies: r-torch@0.16.3 r-tinflex@2.4 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-flexmix@2.3-20
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/lsablica/circlus
Licenses: GPL 3
Synopsis: Clustering and Simulation of Spherical Cauchy and PKBD Models
Description:

This package provides tools for estimation and clustering of spherical data, seamlessly integrated with the flexmix package. Includes the necessary M-step implementations for both Poisson Kernel-Based Distribution (PKBD) and spherical Cauchy distribution. Additionally, the package provides random number generators for PKBD and spherical Cauchy distribution. Methods are based on Golzy M., Markatou M. (2020) <doi:10.1080/10618600.2020.1740713>, Kato S., McCullagh P. (2020) <doi:10.3150/20-bej1222> and Sablica L., Hornik K., Leydold J. (2023) <doi:10.1214/23-ejs2149>.

r-doublin 0.2.0
Propagated dependencies: r-xtable@1.8-4 r-visnetwork@2.1.4 r-tidyverse@2.0.0 r-shinywidgets@0.9.0 r-shinythemes@1.2.0 r-shinydashboard@0.7.3 r-shiny@1.11.1 r-rjags@4-17 r-plotly@4.11.0 r-mstats@3.4.0 r-magrittr@2.0.4 r-lubridate@1.9.4 r-ggplot2@4.0.1 r-flexsurv@2.3.2 r-epicontacts@1.1.4 r-dt@0.34.0 r-dplyr@1.1.4 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=doublIn
Licenses: GPL 3+
Synopsis: Estimate Incubation or Latency Time using Doubly Interval Censored Observations
Description:

Visualize contact tracing data using a shiny app and estimate the incubation or latency time of an infectious disease respecting the following characteristics in the analysis; (i) doubly interval censoring with (partly) overlapping or distinct windows; (ii) an infection risk corresponding to exponential growth; (iii) right truncation allowing for individual truncation times; (iv) different choices concerning the family of the distribution. For our earlier work, we refer to Arntzen et al. (2023) <doi:10.1002/sim.9726>. A paper describing our approach in detail will follow.

r-easybgm 0.3.1
Propagated dependencies: r-qgraph@1.9.8 r-igraph@2.2.1 r-hdinterval@0.2.4 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-coda@0.19-4.1 r-bgms@0.1.6.1 r-bggm@2.1.6 r-bdgraph@2.74
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://github.com/KarolineHuth/easybgm
Licenses: GPL 2+
Synopsis: Extracting and Visualizing Bayesian Graphical Models
Description:

Fit and visualize the results of a Bayesian analysis of networks commonly found in psychology. The package supports fitting cross-sectional network models fitted using the packages BDgraph', bgms and BGGM', as well as network comparison fitted using the bgms and BBGM'. The package provides the parameter estimates, posterior inclusion probabilities, inclusion Bayes factor, and the posterior density of the parameters. In addition, for BDgraph and bgms it allows to assess the posterior structure space. Furthermore, the package comes with an extensive suite for visualizing results.

r-esmprep 0.2.0
Propagated dependencies: r-lubridate@1.9.4
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://github.com/mmiche/esmprep
Licenses: GPL 2+
Synopsis: Data Preparation During and After the Use of the Experience Sampling Methodology (ESM)
Description:

Support in preparing a raw ESM dataset for statistical analysis. Preparation includes the handling of errors (mostly due to technological reasons) and the generating of new variables that are necessary and/or helpful in meeting the conditions when statistically analyzing ESM data. The functions in esmprep are meant to hierarchically lead from bottom, i.e. the raw (separated) ESM dataset(s), to top, i.e. a single ESM dataset ready for statistical analysis. This hierarchy evolved out of my personal experience in working with ESM data.

r-gen3sis 1.6.0
Propagated dependencies: r-stringr@1.6.0 r-rcpp@1.1.0 r-raster@3.6-32 r-matrix@1.7-4 r-gdistance@1.6.5 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/project-Gen3sis/R-package
Licenses: GPL 3
Synopsis: General Engine for Eco-Evolutionary Simulations
Description:

This package contains an engine for spatially-explicit eco-evolutionary mechanistic models with a modular implementation and several support functions. It allows exploring the consequences of ecological and macroevolutionary processes across realistic or theoretical spatio-temporal landscapes on biodiversity patterns as a general term. Reference: Oskar Hagen, Benjamin Flueck, Fabian Fopp, Juliano S. Cabral, Florian Hartig, Mikael Pontarp, Thiago F. Rangel, Loic Pellissier (2021) "gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth's biodiversity" <doi:10.1371/journal.pbio.3001340>.

r-gmmsslm 1.1.6
Propagated dependencies: r-mvtnorm@1.3-3
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=gmmsslm
Licenses: GPL 3
Synopsis: Semi-Supervised Gaussian Mixture Model with a Missing-Data Mechanism
Description:

The algorithm of semi-supervised learning is based on finite Gaussian mixture models and includes a mechanism for handling missing data. It aims to fit a g-class Gaussian mixture model using maximum likelihood. The algorithm treats the labels of unclassified features as missing data, building on the framework introduced by Rubin (1976) <doi:10.2307/2335739> for missing data analysis. By taking into account the dependencies in the missing pattern, the algorithm provides more information for determining the optimal classifier, as specified by Bayes rule.

r-ggroups 2.1.2
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/nilforooshan/ggroups
Licenses: GPL 3
Synopsis: Pedigree and Genetic Groups
Description:

Calculates additive and dominance genetic relationship matrices and their inverses, in matrix and tabular-sparse formats. It includes functions for checking and processing pedigree, calculating inbreeding coefficients (Meuwissen & Luo, 1992 <doi:10.1186/1297-9686-24-4-305>), as well as functions to calculate the matrix of genetic group contributions (Q), and adding those contributions to the genetic merit of animals (Quaas (1988) <doi:10.3168/jds.S0022-0302(88)79691-5>). Calculation of Q is computationally extensive. There are computationally optimized functions to calculate Q.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268
Total results: 30423