Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An efficient Rcpp implementation of the Adaptive Rejection Metropolis Sampling (ARMS) algorithm proposed by Gilks, W. R., Best, N. G. and Tan, K. K. C. (1995) <doi:10.2307/2986138>. This allows for sampling from a univariate target probability distribution specified by its (potentially unnormalised) log density.
Many complex plots are actually composite plots, such as oncoplot', funkyheatmap', upsetplot', etc. We can produce subplots using ggplot2 and combine them to create composite plots using aplot'. In this way, it is easy to customize these complex plots, by adding, deleting or modifying subplots in the final plot. This package provides a set of utilities to help users to create subplots and complex plots.
This package provides a simple client for the Amazon Web Services ('AWS') Identity and Access Management ('IAM') API <https://aws.amazon.com/iam/>.
This package provides functions to perform the fitting of an adaptive mixture of Student-t distributions to a target density through its kernel function as described in Ardia et al. (2009) <doi:10.18637/jss.v029.i03>. The mixture approximation can then be used as the importance density in importance sampling or as the candidate density in the Metropolis-Hastings algorithm to obtain quantities of interest for the target density itself.
Manage keys, certificates, secrets, and storage accounts in Microsoft's Key Vault service: <https://azure.microsoft.com/products/key-vault/>. Provides facilities to store and retrieve secrets, use keys to encrypt, decrypt, sign and verify data, and manage certificates. Integrates with the AzureAuth package to enable authentication with a certificate, and with the openssl package for importing and exporting cryptographic objects. Part of the AzureR family of packages.
This package produces several metrics to assess the prediction of ordinal categories based on the estimated probability distribution for each unit of analysis produced by any model returning a matrix with these probabilities.
This package provides a toolbox for programming Clinical Data Standards Interchange Consortium (CDISC) compliant Analysis Data Model (ADaM) datasets in R. ADaM datasets are a mandatory part of any New Drug or Biologics License Application submitted to the United States Food and Drug Administration (FDA). Analysis derivations are implemented in accordance with the "Analysis Data Model Implementation Guide" (CDISC Analysis Data Model Team, 2021, <https://www.cdisc.org/standards/foundational/adam>). The package is an extension package of the admiral package focusing on the metabolism therapeutic area.
This package provides a simple method to improve the accessibility of rmarkdown documents. The package provides functions for creating or modifying rmarkdown documents, resolving known errors and alerts that result in accessibility issues for screen reader users.
Clinical trial design for subgroup selection in three-stage group sequential trial as described in Lai, Lavori and Liao (2014, <doi:10.1016/j.cct.2014.09.001>). Includes facilities for design, exploration and analysis of such trials. An implementation of the initial DEFUSE-3 trial is also provided as a vignette.
Estimates a first-price auction model with conditionally independent private values as described in MacKay (2020) <doi:10.2139/ssrn.3096534>. The model allows for unobserved heterogeneity that is common to all bidders in addition to observable heterogeneity.
Stanford ATLAS (Advanced Temporal Search Engine) is a powerful tool that allows constructing cohorts of patients extremely quickly and efficiently. This package is designed to interface directly with an instance of ATLAS search engine and facilitates API queries and data dumps. Prerequisite is a good knowledge of the temporal language to be able to efficiently construct a query. More information available at <https://shahlab.stanford.edu/start>.
This package provides functions to produce accessible HTML slides, HTML', Word and PDF documents from input R markdown files. Accessible PDF files are produced only on a Windows Operating System. One aspect of accessibility is providing a headings structure that is recognised by a screen reader, providing a navigational tool for a blind or partially-sighted person. A key aim is to produce documents of different formats easily from each of a collection of R markdown source files. Input R markdown files are rendered using the render() function from the rmarkdown package <https://cran.r-project.org/package=rmarkdown>. A zip file containing multiple output files can be produced from one function call. A user-supplied template Word document can be used to determine the formatting of an output Word document. Accessible PDF files are produced from Word documents using OfficeToPDF <https://github.com/cognidox/OfficeToPDF>. A convenience function, install_otp() is provided to install this software. The option to print HTML output to (non-accessible) PDF files is also available.
Power and associated functions useful in prospective planning and monitoring of a clinical trial when a recurrent event endpoint is to be assessed by the robust Andersen-Gill model, see Lin, Wei, Yang, and Ying (2010) <doi:10.1111/1467-9868.00259>. The equations developed in Ingel and Jahn-Eimermacher (2014) <doi:10.1002/bimj.201300090> and their consequences are employed.
We aim to deal with data with measurement error in the response and misclassification censoring status under an AFT model. This package primarily contains three functions, which are used to generate artificial data, correction for error-prone data and estimate the functional covariates for an AFT model.
Parse Autonomous Recording Unit (ARU) data and for sub-sampling recordings. Extract Metadata from your recordings, select a subset of recordings for interpretation, and prepare files for processing on the WildTrax <https://wildtrax.ca/> platform. Read and process metadata from recordings collected using the SongMeter and BAR-LT types of ARUs.
This package implements the alternating k-means biclustering algorithm in Fraiman and Li (2020) <arXiv:2009.04550>.
Generate spreadsheet publications that follow best practice guidance from the UK government's Analysis Function, available at <https://analysisfunction.civilservice.gov.uk/policy-store/releasing-statistics-in-spreadsheets/>, with a focus on accessibility. See also the Python package gptables'.
Interactive graphical user interface (GUI) for the package AdhereR', allowing the user to access different data sources, to explore the patterns of medication use therein, and the computation of various measures of adherence. It is implemented using Shiny and HTML/CSS/JavaScript.
Estimation and inference methods for bounding average treatment effects (on the treated) that are valid under an unconfoundedness assumption. The bounds are designed to be robust in challenging situations, for example, when the conditioning variables take on a large number of different values in the observed sample, or when the overlap condition is violated. This robustness is achieved by only using limited "pooling" of information across observations. For more details, see the paper by Lee and Weidner (2021), "Bounding Treatment Effects by Pooling Limited Information across Observations," <arXiv:2111.05243>.
Extraction, preparation, visualisation and analysis of TERN AusPlots ecosystem monitoring data. Direct access to plot-based data on vegetation and soils across Australia, including physical sample barcode numbers. Simple function calls extract the data and merge them into species occurrence matrices for downstream analysis, or calculate things like basal area and fractional cover. TERN AusPlots is a national field plot-based ecosystem surveillance monitoring method and dataset for Australia. The data have been collected across a national network of plots and transects by the Terrestrial Ecosystem Research Network (TERN - <https://www.tern.org.au>), an Australian Government NCRIS-enabled project, and its Ecosystem Surveillance platform (<https://www.tern.org.au/tern-land-observatory/ecosystem-surveillance-and-environmental-monitoring/>).
Create APA style text from analyses for use within R Markdown documents. Descriptive statistics, confidence intervals, and cell sizes are reported.
Set of tools for fitting the additive partial linear models with symmetric autoregressive errors of order p, or APLMS-AR(p). This setup enables the modeling of a time series response variable using linear and nonlinear structures of a set of explanatory variables, with nonparametric components approximated by natural cubic splines or P-splines. It also accounts for autoregressive error terms with distributions that have lighter or heavier tails than the normal distribution. The package includes various error distributions, such as normal, generalized normal, Student's t, generalized Student's t, power-exponential, and Cauchy distributions. Chou-Chen, S.W., Oliveira, R.A., Raicher, I., Gilberto A. Paula (2024) <doi:10.1007/s00362-024-01590-w>.
It implemented Age-Period-Interaction Model (APC-I Model) proposed in the paper of Liying Luo and James S. Hodges in 2019. A new age-period-cohort model for describing and investigating inter-cohort differences and life course dynamics.
This package provides tools for downloading hourly averages, daily maximums and minimums from each of the pollution, wind, and temperature measuring stations or geographic zones in the Mexico City metro area. The package also includes the locations of each of the stations and zones. See <http://aire.cdmx.gob.mx/> for more information.