This package provides an R interface for volesti C++ package. volesti computes estimations of volume of polytopes given by (i) a set of points, (ii) linear inequalities or (iii) Minkowski sum of segments (a.k.a. zonotopes). There are three algorithms for volume estimation as well as algorithms for sampling, rounding and rotating polytopes. Moreover, volesti provides algorithms for estimating copulas useful in computational finance. Methods implemented in volesti are described in A. Chalkis and V. Fisikopoulos (2022) <doi:10.32614/RJ-2021-077> and references therein.
DEGraph implements recent hypothesis testing methods which directly assess whether a particular gene network is differentially expressed between two conditions. This is to be contrasted with the more classical two-step approaches which first test individual genes, then test gene sets for enrichment in differentially expressed genes. These recent methods take into account the topology of the network to yield more powerful detection procedures. DEGraph provides methods to easily test all KEGG pathways for differential expression on any gene expression data set and tools to visualize the results.
SpatialFeatureExperiment (SFE) is a new S4 class for working with spatial single-cell genomics data. The voyager package implements basic exploratory spatial data analysis (ESDA) methods for SFE. Univariate methods include univariate global spatial ESDA methods such as Moran's I, permutation testing for Moran's I, and correlograms. Bivariate methods include Lee's L and cross variogram. Multivariate methods include MULTISPATI PCA and multivariate local Geary's C recently developed by Anselin. The Voyager package also implements plotting functions to plot SFE data and ESDA results.
It fits finite mixture models for censored or/and missing data using several multivariate distributions. Point estimation and asymptotic inference (via empirical information matrix) are offered as well as censored data generation. Pairwise scatter and contour plots can be generated. Possible multivariate distributions are the well-known normal, Student-t and skew-normal distributions. This package is an complement of Lachos, V. H., Moreno, E. J. L., Chen, K. & Cabral, C. R. B. (2017) <doi:10.1016/j.jmva.2017.05.005> for the multivariate skew-normal case.
Implementing seven Covariate-Adaptive Randomization to assign patients to two treatments. Three of these procedures can also accommodate quantitative and mixed covariates. Given a set of covariates, the user can generate a single sequence of allocations or replicate the design multiple times by simulating the patients covariate profiles. At the end, an extensive assessment of the performance of the randomization procedures is provided, calculating several imbalance measures. See Baldi Antognini A, Frieri R, Zagoraiou M and Novelli M (2022) <doi:10.1007/s00362-022-01381-1> for details.
This package provides functions providing an easy and intuitive way for fitting and clusters data using the Mixture of Unigrams models by means the Expectation-Maximization algorithm (Nigam, K. et al. (2000). <doi:10.1023/A:1007692713085>), Mixture of Dirichlet-Multinomials estimated by Gradient Descent (Anderlucci, Viroli (2020) <doi:10.1007/s11634-020-00399-3>) and Deep Mixture of Multinomials whose estimates are obtained with Gibbs sampling scheme (Viroli, Anderlucci (2020) <doi:10.1007/s11222-020-09989-9>). There are also functions for graphical representation of clusters obtained.
Recent technological advances have enable the simultaneous collection of multi-omics data i.e., different types or modalities of molecular data, presenting challenges for integrative prediction modeling due to the heterogeneous, high-dimensional nature and possible missing modalities of some individuals. We introduce this package for late integrative prediction modeling, enabling modality-specific variable selection and prediction modeling, followed by the aggregation of the modality-specific predictions to train a final meta-model. This package facilitates conducting late integration predictive modeling in a systematic, structured, and reproducible way.
Collection of packages for work with API Google Ads <https://developers.google.com/google-ads/api/docs/start>, Yandex Direct <https://yandex.ru/dev/direct/>, Yandex Metrica <https://yandex.ru/dev/metrika/>, MyTarget <https://target.my.com/help/advertisers/api_arrangement/ru>, Vkontakte <https://vk.com/dev/methods>, Facebook <https://developers.facebook.com/docs/marketing-apis/> and AppsFlyer <https://support.appsflyer.com/hc/en-us/articles/207034346-Using-Pull-API-aggregate-data>. This packages allows you loading data from ads account and manage your ads materials.
This package provides tools to streamline the extraction, processing, and visualization of Computable General Equilibrium (CGE) results from GTAP models. Designed for compatibility with both .har and .sl4 files, the package enables users to automate data preparation, apply mapping metadata, and generate high-quality plots and summary tables with minimal coding. GTAPViz supports flexible export options (e.g., Text, CSV, Stata', or Excel formats). This facilitates efficient post-simulation analysis for economic research and policy reporting. Includes helper functions to filter, format, and customize outputs with reproducible styling.
This package contains most of the hex font files from the GNU Unifont Project <https://unifoundry.com/unifont/> compressed by xz'. GNU Unifont is a duospaced bitmap font that attempts to cover all the official Unicode glyphs plus several of the artificial scripts in the (Under-)ConScript Unicode Registry <https://www.kreativekorp.com/ucsur/>. Provides a convenience function for loading in several of them at the same time as a bittermelon bitmap font object for easy rendering of the glyphs in an R terminal or graphics device.
This package provides functions for normalizing standard laboratory measurements (e.g. hemoglobin, cholesterol levels) according to age and sex, based on the algorithms described in "Personalized lab test models to quantify disease potentials in healthy individuals" (Netta Mendelson Cohen, Omer Schwartzman, Ram Jaschek, Aviezer Lifshitz, Michael Hoichman, Ran Balicer, Liran I. Shlush, Gabi Barbash & Amos Tanay, <doi:10.1038/s41591-021-01468-6>). Allows users to easily obtain normalized values for standard lab results, and to visualize their distributions. See more at <https://tanaylab.weizmann.ac.il/labs/>.
Traditional methods typically detect breakpoints from individual signals, which means that when applied separately to multiple signals, the breakpoints are not aligned. However, this package implements a common breakpoint detection approach for multiple piecewise constant signals, resulting in increased detection sensitivity and specificity. By employing various techniques, optimal performance is ensured, and computation is accelerated. We hope that this package will be beneficial for researchers in signal processing, bioinformatics, economy, and other related fields. The segmentation(), lambda_estimator() functions are the main functions of this package.
Finding hidden clusters in structured data can be hindered by the presence of masking variables. If not detected, masking variables are used to calculate the overall similarities between units, and therefore the cluster attribution is more imprecise. The algorithm q-vars implements an optimization method to find the variables that most separate units between clusters. In this way, masking variables can be discarded from the data frame and the clustering is more accurate. Tests can be found in Benati et al.(2017) <doi:10.1080/01605682.2017.1398206>.
Calculates the number of four-taxon subtrees consistent with a pair of cladograms, calculating the symmetric quartet distance of Bandelt & Dress (1986), Reconstructing the shape of a tree from observed dissimilarity data, Advances in Applied Mathematics, 7, 309-343 <doi:10.1016/0196-8858(86)90038-2>, and using the tqDist algorithm of Sand et al. (2014), tqDist: a library for computing the quartet and triplet distances between binary or general trees, Bioinformatics, 30, 2079â 2080 <doi:10.1093/bioinformatics/btu157> for pairs of binary trees.
Providing convenience functions to connect R with the Spotify application programming interface ('API'). At first it aims to help setting up the OAuth2.0 Authentication flow. The default output of the get_*() functions is tidy, but optionally the functions could return the raw response from the API as well. The search_*() and get_*() functions can be combined. See the vignette for more information and examples and the official Spotify for Developers website <https://developer.spotify.com/documentation/web-api/> for information about the Web API'.
Using principal component analysis as a base model, SCOUTer offers a new approach to simulate outliers in a simple and precise way. The user can generate new observations defining them by a pair of well-known statistics: the Squared Prediction Error (SPE) and the Hotelling's T^2 (T^2) statistics. Just by introducing the target values of the SPE and T^2, SCOUTer returns a new set of observations with the desired target properties. Authors: Alba González, Abel Folch-Fortuny, Francisco Arteaga and Alberto Ferrer (2020).
This package provides the SMOTE with Boosting (SMOTEWB) algorithm. See F. SaÄ lam, M. A. Cengiz (2022) <doi:10.1016/j.eswa.2022.117023>. It is a SMOTE-based resampling technique which creates synthetic data on the links between nearest neighbors. SMOTEWB uses boosting weights to determine where to generate new samples and automatically decides the number of neighbors for each sample. It is robust to noise and outperforms most of the alternatives according to Matthew Correlation Coefficient metric. Alternative resampling methods are also available in the package.
Cancer is a genetic disease caused by somatic mutations in genes controlling key biological functions such as cellular growth and division. Such mutations may arise both through cell-intrinsic and exogenous processes, generating characteristic mutational patterns over the genome named mutational signatures. The study of mutational signatures have become a standard component of modern genomics studies, since it can reveal which (environmental and endogenous) mutagenic processes are active in a tumor, and may highlight markers for therapeutic response. Mutational signatures computational analysis presents many pitfalls. First, the task of determining the number of signatures is very complex and depends on heuristics. Second, several signatures have no clear etiology, casting doubt on them being computational artifacts rather than due to mutagenic processes. Last, approaches for signatures assignment are greatly influenced by the set of signatures used for the analysis. To overcome these limitations, we developed RESOLVE (Robust EStimation Of mutationaL signatures Via rEgularization), a framework that allows the efficient extraction and assignment of mutational signatures. RESOLVE implements a novel algorithm that enables (i) the efficient extraction, (ii) exposure estimation, and (iii) confidence assessment during the computational inference of mutational signatures.
This package implements functions to find influential TF and target based on different input type. It have five module: Multi-peak multi-gene annotaion(mmPeakAnno module), Calculate regulation potential(calcRP module), Find influential Target based on ChIP-Seq and RNA-Seq data(Find influential Target module), Find influential TF based on different input(Find influential TF module), Calculate peak-gene or peak-peak correlation(peakGeneCor module). And there are also some other useful function like integrate different source information, calculate jaccard similarity for your TF.
SpikeLI is a package that performs the analysis of the Affymetrix spike-in data using the Langmuir Isotherm. The aim of this package is to show the advantages of a physical-chemistry based analysis of the Affymetrix microarray data compared to the traditional methods. The spike-in (or Latin square) data for the HGU95 and HGU133 chipsets have been downloaded from the Affymetrix web site. The model used in the spikeLI package is described in details in E. Carlon and T. Heim, Physica A 362, 433 (2006).
Estimate sample sizes needed to capture target levels of genetic diversity from a population (multivariate allele frequencies) for applications like germplasm conservation and breeding efforts. Compares bootstrap samples to a full population using linear regression, employing the R-squared value to represent the proportion of diversity captured. Iteratively increases sample size until a user-defined target R-squared is met. Offers a parallelized R implementation of a previously developed python method. All ploidy levels are supported. For more details, see Sandercock et al. (2024) <doi:10.1073/pnas.2403505121>.
This package provides a fast, flexible and transparent framework to estimate context-specific word and short document embeddings using the a la carte embeddings approach developed by Khodak et al. (2018) <doi:10.48550/arXiv.1805.05388> and evaluate hypotheses about covariate effects on embeddings using the regression framework developed by Rodriguez et al. (2021)<doi:10.1017/S0003055422001228>. New version of the package applies a new estimator to measure the distance between word embeddings as described in Green et al. (2025) <doi:10.1017/pan.2024.22>.
Algebra of operations for blending, copying, adjusting, and compositing layers in ggplot2'. Supports copying and adjusting the aesthetics or parameters of an existing layer, partitioning a layer into multiple pieces for re-composition, applying affine transformations to layers, and combining layers (or partitions of layers) using blend modes (including commutative blend modes, like multiply and darken). Blend mode support is particularly useful for creating plots with overlapping groups where the layer drawing order does not change the output; see Kindlmann and Scheidegger (2014) <doi:10.1109/TVCG.2014.2346325>.
An R port of the hashids library. hashids generates YouTube-like hashes from integers or vector of integers. Hashes generated from integers are relatively short, unique and non-seqential. hashids can be used to generate unique ids for URLs and hide database row numbers from the user. By default hashids will avoid generating common English cursewords by preventing certain letters being next to each other. hashids are not one-way: it is easy to encode an integer to a hashid and decode a hashid back into an integer.