Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Examples of datasets on allometry, the study of the relationship of biological traits to body size. This package contains the dataset of morphological measurement taken from 113 maritime earwigs (Anisolabis maritima) by Matsuzawa and Konuma (2025) <doi:10.1093/biolinnean/blaf031>.
Automatic normalisation of a data frame to third normal form, with the intention of easing the process of data cleaning. (Usage to design your actual database for you is not advised.) Originally inspired by the AutoNormalize library for Python by Alteryx (<https://github.com/alteryx/autonormalize>), with various changes and improvements. Automatic discovery of functional or approximate dependencies, normalisation based on those, and plotting of the resulting "database" via Graphviz', with options to exclude some attributes at discovery time, or remove discovered dependencies at normalisation time.
Opens and imports log files from Angstrom Engineering Thermal Evaporator and extracts basic characteristics, such as base pressure, time of the evaporation. It can visualize the deposition observables for review.
Calculate the area of triangles and polygons using the shoelace formula. Area may be signed, taking into account path orientation, or unsigned, ignoring path orientation. The shoelace formula is described at <https://en.wikipedia.org/wiki/Shoelace_formula>.
Simple and transparent parsing of genotype/dosage data from an input Variant Call Format (VCF) file, matching of genotype coordinates to the component Single Nucleotide Polymorphisms (SNPs) of an existing polygenic score (PGS), and application of SNP weights to dosages for the calculation of a polygenic score for each individual in accordance with the additive weighted sum of dosages model. Methods are designed in reference to best practices described by Collister, Liu, and Clifton (2022) <doi:10.3389/fgene.2022.818574>.
La libreria ACEP contiene funciones especificas para desarrollar analisis computacional de eventos de protesta. Asimismo, contiene base de datos con colecciones de notas sobre protestas y diccionarios de palabras conflictivas. Coleccion de diccionarios que reune diccionarios de diferentes origenes. The ACEP library contains specific functions to perform computational analysis of protest events. It also contains a database with collections of notes on protests and dictionaries of conflicting words. Collection of dictionaries that brings together dictionaries from different sources.
One and two sample mean and variance tests (differences and ratios) are considered. The test statistics are all expressed in the same form as the Student t-test, which facilitates their presentation in the classroom. This contribution also fills the gap of a robust (to non-normality) alternative to the chi-square single variance test for large samples, since no such procedure is implemented in standard statistical software.
This package provides a simple client for the Amazon Web Services ('AWS') Identity and Access Management ('IAM') API <https://aws.amazon.com/iam/>.
Colour palettes and a ggplot2 theme to follow the UK Government Analysis Function best practice guidance for producing data visualisations, available at <https://analysisfunction.civilservice.gov.uk/policy-store/data-visualisation-charts/>. Includes continuous and discrete colour and fill scales, as well as a ggplot2 theme.
Coerce R object to asciidoc', txt2tags', restructuredText', org', textile or pandoc syntax. Package comes with a set of drivers for Sweave'.
Allows the user to implement an address search auto completion menu on shiny text inputs. This is done using the Algolia Places JavaScript library. See <https://community.algolia.com/places/>.
This package implements several new association indices that can control for various types of errors. Also includes existing association indices and functions for simulating the effects of different rates of error on estimates of association strength between individuals using each method.
Utilities designed to make the analysis of field trials easier and more accessible for everyone working in plant breeding. It provides a simple and intuitive interface for conducting single and multi-environmental trial analysis, with minimal coding required. Whether you're a beginner or an experienced user, agriutilities will help you quickly and easily carry out complex analyses with confidence. With built-in functions for fitting Linear Mixed Models, agriutilities is the ideal choice for anyone who wants to save time and focus on interpreting their results. Some of the functions require the R package asreml for the ASReml software, this can be obtained upon purchase from VSN international <https://vsni.co.uk/software/asreml-r/>.
Solves the problem of identifying the densest submatrix in a given or sampled binary matrix, Bombina et al. (2019) <arXiv:1904.03272>.
This package implements the differential equations associated to different versions of Allometric Trophic Models (ATN) to estimate the temporal dynamics of species biomasses in food webs. It offers several features to generate synthetic food webs and to parametrise models as well as a wrapper to the ODE solver deSolve.
This package provides methods to construct frequentist confidence sets with valid marginal coverage for identifying the population-level argmin or argmax based on IID data. For instance, given an n by p loss matrixâ where n is the sample size and p is the number of modelsâ the CS.argmin() method produces a discrete confidence set that contains the model with the minimal (best) expected risk with desired probability. The argmin.HT() method helps check if a specific model should be included in such a confidence set. The main implemented method is proposed by Tianyu Zhang, Hao Lee and Jing Lei (2024) "Winners with confidence: Discrete argmin inference with an application to model selection".
This package contains functions to implement automated covariate selection using methods described in the high-dimensional propensity score (HDPS) algorithm by Schneeweiss et.al. Covariate adjustment in real-world-observational-data (RWD) is important for for estimating adjusted outcomes and this can be done by using methods such as, but not limited to, propensity score matching, propensity score weighting and regression analysis. While these methods strive to statistically adjust for confounding, the major challenge is in selecting the potential covariates that can bias the outcomes comparison estimates in observational RWD (Real-World-Data). This is where the utility of automated covariate selection comes in. The functions in this package help to implement the three major steps of automated covariate selection as described by Schneeweiss et. al elsewhere. These three functions, in order of the steps required to execute automated covariate selection are, get_candidate_covariates(), get_recurrence_covariates() and get_prioritised_covariates(). In addition to these functions, a sample real-world-data from publicly available de-identified medical claims data is also available for running examples and also for further exploration. The original article where the algorithm is described by Schneeweiss et.al. (2009) <doi:10.1097/EDE.0b013e3181a663cc> .
Actuarial reports are prepared for the last day of a specific period, such as a month, a quarter or a year. Actuarial models assume that certain events happen at the beginning or end of periods. The package contains functions to easily refer to the first or last (working) day within a specific period relative to a base date to facilitate actuarial reporting and to compare results.
This package provides a collection of tools for the analysis of habitat selection.
Alternative and fast algorithms for the analysis of receiver operating characteristics curves (ROC curves) as described in Thomas et al. (2017) <doi:10.1186/s41512-017-0017-y> and Thomas et al. (2023) <doi:10.1016/j.ajogmf.2023.101110>.
Analysis of means (ANOM) as used in technometrical computing. The package takes results from multiple comparisons with the grand mean (obtained with multcomp', SimComp', nparcomp', or MCPAN') or corresponding simultaneous confidence intervals as input and produces ANOM decision charts that illustrate which group means deviate significantly from the grand mean.
We aim to deal with data with measurement error in the response and misclassification censoring status under an AFT model. This package primarily contains three functions, which are used to generate artificial data, correction for error-prone data and estimate the functional covariates for an AFT model.
Schema definitions and read, write and validation tools for data formatted in accordance with the AIRR Data Representation schemas defined by the AIRR Community <http://docs.airr-community.org>.
An implementation of the additive heredity model for the mixture-of-mixtures experiments of Shen et al. (2019) in Technometrics <doi:10.1080/00401706.2019.1630010>. The additive heredity model considers an additive structure to inherently connect the major components with the minor components. The additive heredity model has a meaningful interpretation for the estimated model because of the hierarchical and heredity principles applied and the nonnegative garrote technique used for variable selection.