This package provides tools to convert from specific formats to more general forms of spatial data. Using tables to store the actual entities present in spatial data provides flexibility, and the functions here deliberately minimize the level of interpretation applied, leaving that for specific applications. Includes support for simple features, round-trip for Spatial classes and long-form tables, analogous to ggplot2::fortify'. There is also a more normal form representation that decomposes simple features and their kin to tables of objects, parts, and unique coordinates.
Computes the t* statistic corresponding to the tau* population coefficient introduced by Bergsma and Dassios (2014) <DOI:10.3150/13-BEJ514> and does so in O(n^2) time following the algorithm of Heller and Heller (2016) <DOI:10.48550/arXiv.1605.08732> building off of the work of Weihs, Drton, and Leung (2016) <DOI:10.1007/s00180-015-0639-x>. Also allows for independence testing using the asymptotic distribution of t* as described by Nandy, Weihs, and Drton (2016) <DOI:10.1214/16-EJS1166>.
This package provides functions for the selection of thresholds for use in extreme value models, based mainly on the methodology in Northrop, Attalides and Jonathan (2017) <doi:10.1111/rssc.12159>. It also performs predictive inferences about future extreme values, based either on a single threshold or on a weighted average of inferences from multiple thresholds, using the revdbayes package <https://cran.r-project.org/package=revdbayes>. At the moment only the case where the data can be treated as independent identically distributed observations is considered.
Density, distribution function, quantile function, and random generation function, maximum likelihood estimation (MLE), penalized maximum likelihood estimation (PMLE), the quartiles method estimation (QM), and median rank estimation (MEDRANK) for the two-parameter exponential distribution. MLE and PMLE are based on Mengjie Zheng (2013)<https://scse.d.umn.edu/sites/scse.d.umn.edu/files/mengjie-thesis_masters-1.pdf>. QM is based on Entisar Elgmati and Nadia Gregni (2016)<doi:10.5539/ijsp.v5n5p12>. MEDRANK is based on Matthew Reid (2022)<doi:10.5281/ZENODO.3938000>.
This package provides tools for differential expression biomarker discovery based on microarray and next-generation sequencing data that leverage efficient semiparametric estimators of the average treatment effect for variable importance analysis. Estimation and inference of the (marginal) average treatment effects of potential biomarkers are computed by targeted minimum loss-based estimation, with joint, stable inference constructed across all biomarkers using a generalization of moderated statistics for use with the estimated efficient influence function. The procedure accommodates the use of ensemble machine learning for the estimation of nuisance functions.
This package provides different high-level graphics functions for displaying large datasets, displaying circular data in a very flexible way, finding local maxima, brewing color ramps, drawing nice arrows, zooming 2D-plots, creating figures with differently colored margin and plot region. In addition, the package contains auxiliary functions for data manipulation like omitting observations with irregular values or selecting data by logical vectors, which include NAs. Other functions are especially useful in spectroscopy and analyses of environmental data: robust baseline fitting, finding peaks in spectra, converting humidity measures.
This package exposes combinators that can wrap arbitrary monadic actions. They run the action and potentially retry running it with some configurable delay for a configurable number of times. The purpose is to make it easier to work with IO and especially network IO actions that often experience temporary failure and warrant retrying of the original action. For example, a database query may time out for a while, in which case we should hang back for a bit and retry the query instead of simply raising an exception.
This package provides pre-processed RNA-seq data where the epithelial to mesenchymal transition was induced on cell lines. These data come from three publications Cursons et al. (2015), Cursons etl al. (2018) and Foroutan et al. (2017). In each of these publications, EMT was induces across multiple cell lines following treatment by TGFb among other stimulants. This data will be useful in determining the regulatory programs modified in order to achieve an EMT. Data were processed by the Davis laboratory in the Bioinformatics division at WEHI.
magrene allows the identification and analysis of graph motifs in (duplicated) gene regulatory networks (GRNs), including lambda, V, PPI V, delta, and bifan motifs. GRNs can be tested for motif enrichment by comparing motif frequencies to a null distribution generated from degree-preserving simulated GRNs. Motif frequencies can be analyzed in the context of gene duplications to explore the impact of small-scale and whole-genome duplications on gene regulatory networks. Finally, users can calculate interaction similarity for gene pairs based on the Sorensen-Dice similarity index.
Data processing and generating stratigraphic sections for volcanic deposits and tephrastratigraphy. Package was developed for studies on Alaska volcanoes ("av") where stratigraphic ("strat") figures are needed for interpreting eruptive histories, but the methods are applicable to any sediment stratigraphy project. Plotting styles inspired by "SedLog" (Zervas et al. 2009) <doi:10.1016/j.cageo.2009.02.009> but with more customizable outputs and flexible data input based on best practice recommendations for the tephra community (Wallace et al. 2022) <doi:10.1038/s41597-022-01515-y>.
This package provides a suite of functions for analyzing and visualizing the health economic outputs of mathematical models. This package was developed with funding from the National Institutes of Allergy and Infectious Diseases of the National Institutes of Health under award no. R01AI138783. The content of this package is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The theoretical underpinnings of dampack''s functionality are detailed in Hunink et al. (2014) <doi:10.1017/CBO9781139506779>.
Interval estimation of the population allele frequency from qPCR analysis based on the restriction enzyme digestion (RED)-DeltaDeltaCq method (Osakabe et al. 2017, <doi:10.1016/j.pestbp.2017.04.003>), as well as general DeltaDeltaCq analysis. Compatible with the Cq measurement of DNA extracted from multiple individuals at once, so called "group-testing", this model assumes that the quantity of DNA extracted from an individual organism follows a gamma distribution. Therefore, the point estimate is robust regarding the uncertainty of the DNA yield.
Filling in the missing entries of a partially observed data is one of fundamental problems in various disciplines of mathematical science. For many cases, data at our interests have canonical form of matrix in that the problem is posed upon a matrix with missing values to fill in the entries under preset assumptions and models. We provide a collection of methods from multiple disciplines under Matrix Completion, Imputation, and Inpainting. See Davenport and Romberg (2016) <doi:10.1109/JSTSP.2016.2539100> for an overview of the topic.
This package provides tools are provided to expand vectors of short URLs into long URLs'. No API services are used, which may mean that this operates more slowly than API services do (since they usually cache results of expansions that every user of the service requests). You can setup your own caching layer with the memoise package if you wish to have a speedup during single sessions or add larger dependencies, such as Redis', to gain a longer-term performance boost at the expense of added complexity.
Designed to automate the calculation of Emergency Medical Service (EMS) quality metrics, nemsqar implements measures defined by the National EMS Quality Alliance (NEMSQA). By providing reliable, evidence-based quality assessments, the package supports EMS agencies, healthcare providers, and researchers in evaluating and improving patient outcomes. Users can find details on all approved NEMSQA measures at <https://www.nemsqa.org/measures>. Full technical specifications, including documentation and pseudocode used to develop nemsqar', are available on the NEMSQA website after creating a user profile at <https://www.nemsqa.org>.
This package provides a systematic bioinformatics tool to perform single-sample mutation-based pathway analysis by integrating somatic mutation data with the Protein-Protein Interaction (PPI) network. In this method, we use local and global weighted strategies to evaluate the effects of network genes from mutations according to the network topology and then calculate the mutation-based pathway enrichment score (ssMutPES) to reflect the accumulated effect of mutations of each pathway. Subsequently, the ssMutPES profiles are used for unsupervised spectral clustering to identify cancer subtypes.
Fit Thurstonian forced-choice models (CFA (simple and factor) and IRT) in R. This package allows for the analysis of item response modeling (IRT) as well as confirmatory factor analysis (CFA) in the Thurstonian framework. Currently, estimation can be performed by Mplus and lavaan'. References: Brown & Maydeu-Olivares (2011) <doi:10.1177/0013164410375112>; Jansen, M. T., & Schulze, R. (in review). The Thurstonian linked block design: Improving Thurstonian modeling for paired comparison and ranking data.; Maydeu-Olivares & Böckenholt (2005) <doi:10.1037/1082-989X.10.3.285>.
This package provides an R interface for volesti C++ package. volesti computes estimations of volume of polytopes given by (i) a set of points, (ii) linear inequalities or (iii) Minkowski sum of segments (a.k.a. zonotopes). There are three algorithms for volume estimation as well as algorithms for sampling, rounding and rotating polytopes. Moreover, volesti provides algorithms for estimating copulas useful in computational finance. Methods implemented in volesti are described in A. Chalkis and V. Fisikopoulos (2022) <doi:10.32614/RJ-2021-077> and references therein.
DEGraph implements recent hypothesis testing methods which directly assess whether a particular gene network is differentially expressed between two conditions. This is to be contrasted with the more classical two-step approaches which first test individual genes, then test gene sets for enrichment in differentially expressed genes. These recent methods take into account the topology of the network to yield more powerful detection procedures. DEGraph provides methods to easily test all KEGG pathways for differential expression on any gene expression data set and tools to visualize the results.
SpatialFeatureExperiment (SFE) is a new S4 class for working with spatial single-cell genomics data. The voyager package implements basic exploratory spatial data analysis (ESDA) methods for SFE. Univariate methods include univariate global spatial ESDA methods such as Moran's I, permutation testing for Moran's I, and correlograms. Bivariate methods include Lee's L and cross variogram. Multivariate methods include MULTISPATI PCA and multivariate local Geary's C recently developed by Anselin. The Voyager package also implements plotting functions to plot SFE data and ESDA results.
Implementing seven Covariate-Adaptive Randomization to assign patients to two treatments. Three of these procedures can also accommodate quantitative and mixed covariates. Given a set of covariates, the user can generate a single sequence of allocations or replicate the design multiple times by simulating the patients covariate profiles. At the end, an extensive assessment of the performance of the randomization procedures is provided, calculating several imbalance measures. See Baldi Antognini A, Frieri R, Zagoraiou M and Novelli M (2022) <doi:10.1007/s00362-022-01381-1> for details.
It fits finite mixture models for censored or/and missing data using several multivariate distributions. Point estimation and asymptotic inference (via empirical information matrix) are offered as well as censored data generation. Pairwise scatter and contour plots can be generated. Possible multivariate distributions are the well-known normal, Student-t and skew-normal distributions. This package is an complement of Lachos, V. H., Moreno, E. J. L., Chen, K. & Cabral, C. R. B. (2017) <doi:10.1016/j.jmva.2017.05.005> for the multivariate skew-normal case.
Interactive R tutorials and datasets for the textbook Field (2026), "Discovering Statistics Using R and RStudio", <https://www.discovr.rocks/>. Interactive tutorials cover general workflow in R and RStudio', summarizing data, visualizing data, fitting models and bias, correlation, the general linear model (GLM), moderation, mediation, missing values, comparing means using the GLM (analysis of variance), comparing adjusted means (analysis of covariance), factorial designs, multilevel models, repeated measures designs, growth models, exploratory factor analysis (EFA), loglinear analysis, and logistic regression. There are no functions, only datasets and interactive tutorials.
This package provides functions providing an easy and intuitive way for fitting and clusters data using the Mixture of Unigrams models by means the Expectation-Maximization algorithm (Nigam, K. et al. (2000). <doi:10.1023/A:1007692713085>), Mixture of Dirichlet-Multinomials estimated by Gradient Descent (Anderlucci, Viroli (2020) <doi:10.1007/s11634-020-00399-3>) and Deep Mixture of Multinomials whose estimates are obtained with Gibbs sampling scheme (Viroli, Anderlucci (2020) <doi:10.1007/s11222-020-09989-9>). There are also functions for graphical representation of clusters obtained.