Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Variable/Feature selection in high or ultra-high dimensional settings has gained a lot of attention recently specially in cancer genomic studies. This package provides a Bayesian approach to tackle this problem, where it exploits mixture of point masses at zero and nonlocal priors to improve the performance of variable selection and coefficient estimation. product moment (pMOM) and product inverse moment (piMOM) nonlocal priors are implemented and can be used for the analyses. This package performs variable selection for binary response and survival time response datasets which are widely used in biostatistic and bioinformatics community. Benefiting from parallel computing ability, it reports necessary outcomes of Bayesian variable selection such as Highest Posterior Probability Model (HPPM), Median Probability Model (MPM) and posterior inclusion probability for each of the covariates in the model. The option to use Bayesian Model Averaging (BMA) is also part of this package that can be exploited for predictive power measurements in real datasets.
This package implements several spatial and spatio-temporal scalable disease mapping models for high-dimensional count data using the INLA technique for approximate Bayesian inference in latent Gaussian models (Orozco-Acosta et al., 2021 <doi:10.1016/j.spasta.2021.100496>; Orozco-Acosta et al., 2023 <doi:10.1016/j.cmpb.2023.107403> and Vicente et al., 2023 <doi:10.1007/s11222-023-10263-x>). The creation and develpment of this package has been supported by Project MTM2017-82553-R (AEI/FEDER, UE) and Project PID2020-113125RB-I00/MCIN/AEI/10.13039/501100011033. It has also been partially funded by the Public University of Navarra (project PJUPNA2001).
Extend the bigmemory package with various analytics. Functions bigkmeans and binit may also be used with native R objects. For tapply'-like functions, the bigtabulate package may also be helpful. For linear algebra support, see bigalgebra'. For mutex (locking) support for advanced shared-memory usage, see synchronicity'.
Imports benthic count data, reformats this data, and computes environmental inferences from this data.
This package performs brace expansions on strings. Made popular by Unix shells, brace expansion allows users to concisely generate certain character vectors by taking a single string and (recursively) expanding the comma-separated lists and double-period-separated integer and character sequences enclosed within braces in that string. The double-period-separated numeric integer expansion also supports padding the resulting numbers with zeros.
Extend the bigmemory package with table', tapply', and split support for big.matrix objects. The functions may also be used with native R matrices for improving speed and memory-efficiency.
Implementation of the BC3NET algorithm for gene regulatory network inference (de Matos Simoes and Frank Emmert-Streib, Bagging Statistical Network Inference from Large-Scale Gene Expression Data, PLoS ONE 7(3): e33624, <doi:10.1371/journal.pone.0033624>).
R client for Bender Hyperparameters optimizer : <https://bender.dreem.com> The R client allows you to communicate with the Bender API and therefore submit some new trials within your R script itself.
This package provides a Bayesian version of the analysis of variance based on a three-component Gaussian mixture for which a Gibbs sampler produces posterior draws. For details about the Bayesian ANOVA based on Gaussian mixtures, see Kelter (2019) <arXiv:1906.07524>.
Adjusts longitudinal regression models using Bayesian methodology for covariance structures of composite symmetry (SC), autoregressive ones of order 1 AR (1) and autoregressive moving average of order (1,1) ARMA (1,1).
Modelling of population growth under static and dynamic environmental conditions. Includes functions for model fitting and making prediction under isothermal and dynamic conditions. The methods (algorithms & models) are based on predictive microbiology (See Perez-Rodriguez and Valero (2012, ISBN:978-1-4614-5519-6)).
The function estimates the hazard function non parametrically from a survival object (possibly adjusted for covariates). The smoothed estimate is based on B-splines from the perspective of generalized linear mixed models. Left truncated and right censoring data are allowed. The package is based on the work in Rebora P (2014) <doi:10.32614/RJ-2014-028>.
This package implements a modified Newton-type algorithm (BSW algorithm) for solving the maximum likelihood estimation problem in fitting a log-binomial model under linear inequality constraints.
The main function generateDataset() processes a user-supplied .R file that contains metadata parameters in order to generate actual data. The metadata parameters have to be structured in the form of metadata objects, the format of which is outlined in the package vignette. This approach allows to generate artificial data in a transparent and reproducible manner.
This package provides several methods for generating density functions based on binned data. Methods include step function, recursive subdivision, and optimized spline. Data are assumed to be nonnegative, the top bin is assumed to have no upper bound, but the bin widths need be equal. All PDF smoothing methods maintain the areas specified by the binned data. (Equivalently, all CDF smoothing methods interpolate the points specified by the binned data.) In practice, an estimate for the mean of the distribution should be supplied as an optional argument. Doing so greatly improves the reliability of statistics computed from the smoothed density functions. Includes methods for estimating the Gini coefficient, the Theil index, percentiles, and random deviates from a smoothed distribution. Among the three methods, the optimized spline (splinebins) is recommended for most purposes. The percentile and random-draw methods should be regarded as experimental, and these methods only support splinebins.
Search and download data from the Swiss Federal Statistical Office (BFS) APIs <https://www.bfs.admin.ch/>.
This package provides a lightweight modelling syntax for defining likelihoods and priors and for computing Bayes factors for simple one parameter models. It includes functionality for computing and plotting priors, likelihoods, and model predictions. Additional functionality is included for computing and plotting posteriors.
Various tools dealing with batch effects, in particular enabling the removal of discrepancies between training and test sets in prediction scenarios. Moreover, addon quantile normalization and addon RMA normalization (Kostka & Spang, 2008) is implemented to enable integrating the quantile normalization step into prediction rules. The following batch effect removal methods are implemented: FAbatch, ComBat, (f)SVA, mean-centering, standardization, Ratio-A and Ratio-G. For each of these we provide an additional function which enables a posteriori ('addon') batch effect removal in independent batches ('test data'). Here, the (already batch effect adjusted) training data is not altered. For evaluating the success of batch effect adjustment several metrics are provided. Moreover, the package implements a plot for the visualization of batch effects using principal component analysis. The main functions of the package for batch effect adjustment are ba() and baaddon() which enable batch effect removal and addon batch effect removal, respectively, with one of the seven methods mentioned above. Another important function here is bametric() which is a wrapper function for all implemented methods for evaluating the success of batch effect removal. For (addon) quantile normalization and (addon) RMA normalization the functions qunormtrain(), qunormaddon(), rmatrain() and rmaaddon() can be used.
Allows the user to carry out GLM on very large data sets. Data can be created using the data_frame() function and appended to the object with object$append(data); data_frame and data_matrix objects are available that allow the user to store large data on disk. The data is stored as doubles in binary format and any character columns are transformed to factors and then stored as numeric (binary) data while a look-up table is stored in a separate .meta_data file in the same folder. The data is stored in blocks and GLM regression algorithm is modified and carries out a MapReduce- like algorithm to fit the model. The functions bglm(), and summary() and bglm_predict() are available for creating and post-processing of models. The library requires Armadillo installed on your system. It may not function on windows since multi-core processing is done using mclapply() which forks R on Unix/Linux type operating systems.
The Epidemic Type Aftershock Sequence (ETAS) model is one of the best-performing methods for modeling and forecasting earthquake occurrences. This package implements Bayesian estimation routines to draw samples from the full posterior distribution of the model parameters, given an earthquake catalog. The paper on which this package is based is Gordon J. Ross - Bayesian Estimation of the ETAS Model for Earthquake Occurrences (2016), available from the below URL.
Model selection by bootstrapping the stepAIC() procedure.
Collect your data on digital marketing campaigns from bing Ads using the Windsor.ai API <https://windsor.ai/api-fields/>.
Combines the magick and imager packages to streamline image analysis, focusing on feature extraction and quantification from biological images, especially microparticles. By providing high throughput pipelines and clustering capabilities, biopixR facilitates efficient insight generation for researchers (Schneider J. et al. (2019) <doi:10.21037/jlpm.2019.04.05>).
This package performs efficient and scalable glm best subset selection using a novel implementation of a branch and bound algorithm. To speed up the model fitting process, a range of optimization methods are implemented in RcppArmadillo'. Parallel computation is available using OpenMP'.