Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
We aim to deal with data with measurement error in the response and misclassification censoring status under an AFT model. This package primarily contains three functions, which are used to generate artificial data, correction for error-prone data and estimate the functional covariates for an AFT model.
This package implements a web-based graphics device for animated visualisations. Modelled on the base syntax, it extends the base graphics functions to support frame-by-frame animation and keyframes animation. The target use cases are real-time animated visualisations, including agent-based models, dynamical systems, and animated diagrams. The generated visualisations can be deployed as GIF images / MP4 videos, as Shiny apps (with interactivity) or as HTML documents through embedding into R Markdown documents.
This package provides functions are provided to read and convert AIFF audio files to WAVE (WAV) format. This supports, for example, use of the tuneR package, which does not currently handle AIFF files. The AIFF file format is defined in <https://web.archive.org/web/20080125221040/http://www.borg.com/~jglatt/tech/aiff.htm> and <https://www.mmsp.ece.mcgill.ca/Documents/AudioFormats/AIFF/Docs/AIFF-1.3.pdf> .
Set of tools for statistical analysis, visualization, and reporting of agroindustrial and agricultural experiments. The package provides functions to perform ANOVA with post-hoc tests (e.g. Tukey HSD and Duncan MRR), compute coefficients of variation, and generate publication-ready summaries. High-level wrappers allow automated multi-variable analysis with optional clustering by experimental factors, as well as direct export of results to Excel spreadsheets and high-resolution image tables for reporting. Functions build on ggplot2', stats', and related packages and follow methods widely used in agronomy (field trials and plant breeding). Key references include Tukey (1949) <doi:10.2307/3001913>, Duncan (1955) <doi:10.2307/3001478>, and Cohen (1988, ISBN:9781138892899); see also agricolae <https://CRAN.R-project.org/package=agricolae> and Wickham (2016, ISBN:9783319242750> for ggplot2'. Versión en español: Conjunto de herramientas para el análisis estadà stico, visualización y generación de reportes en ensayos agroindustriales y agrà colas. Incluye funciones para ANOVA con pruebas post-hoc, resúmenes automáticos multivariables con o sin agrupamiento por factores, y exportación directa de resultados a Excel e imágenes de alta resolución para informes técnicos.
For instructions, check <https://github.com/Hzhang-ouce/ARTofR>. This is a wrapper of bannerCommenter', for inserting neat comments, headers and dividers.
Exploration of Weather Research & Forecasting ('WRF') Model data of Servicio Meteorologico Nacional (SMN) from Amazon Web Services (<https://registry.opendata.aws/smn-ar-wrf-dataset/>) cloud. The package provides the possibility of data downloading, processing and correction methods. It also has map management and series exploration of available meteorological variables of WRF forecast.
Get information about air quality using Airly <https://airly.eu/> API through R.
Perform one-dimensional spline regression with automatic knot selection. This package uses a penalized approach to select the most relevant knots. B-splines of any degree can be fitted. More details in Goepp et al. (2018)', "Spline Regression with Automatic Knot Selection", <arXiv:1808.01770>.
Named after the Irish name for weather, this package contains tidied data from the Irish Meteorological Service's hourly observations for 2017. In all, the data sets include observations from 25 weather stations, and also latitude and longitude coordinates for each weather station. Now includes energy generation data for Ireland and Northern Ireland (2017), including Wind Generation data.
Record asciicast screen casts from R scripts. Convert them to animated SVG images, to be used in README files, or blog posts. Includes asciinema-player as an HTML widget, and an asciicast knitr engine, to embed ascii screen casts in Rmarkdown documents.
Programming neuroscience specific Clinical Data Standards Interchange Consortium (CDISC) compliant Analysis Data Model (ADaM) datasets in R'. ADaM datasets are a mandatory part of any New Drug or Biologics License Application submitted to the United States Food and Drug Administration (FDA). Analysis derivations are implemented in accordance with the "Analysis Data Model Implementation Guide" (CDISC Analysis Data Model Team, 2021, <https://www.cdisc.org/standards/foundational/adam>). This package extends the admiral package.
The Aligned Corpus Toolkit (act) is designed for linguists that work with time aligned transcription data. It offers functions to import and export various annotation file formats ('ELAN .eaf, EXMARaLDA .exb and Praat .TextGrid files), create print transcripts in the style of conversation analysis, search transcripts (span searches across multiple annotations, search in normalized annotations, make concordances etc.), export and re-import search results (.csv and Excel .xlsx format), create cuts for the search results (print transcripts, audio/video cuts using FFmpeg and video sub titles in Subrib title .srt format), modify the data in a corpus (search/replace, delete, filter etc.), interact with Praat using Praat'-scripts, and exchange data with the rPraat package. The package is itself written in R and may be expanded by other users.
Retrieve Amazon EC2 instance metadata from within the running instance.
Easy data analysis and quality checks which are commonly used in data science. It combines the tabular and graphical visualization for easier usability. This package also creates an R Notebook with detailed data exploration with one function call. The notebook can be made interactive.
This package provides functions to retrieve information from Web Feature Service (WFS) and Web Map Service (WMS) layers from various Argentine organizations and import them into R for further analysis. WFS and WMS are standardized protocols for serving georeferenced map data over the internet. For more information on these services, see <https://www.ogc.org/publications/standard/wfs/> and <https://www.ogc.org/publications/standard/wms/>.
An iterative implementation of a recursive binary partitioning algorithm to measure pairwise dependence with a modular design that allows user specification of the splitting logic and stop criteria. Helper functions provide suggested versions of both and support visualization and the computation of summary statistics on final binnings. For a thorough discussion and demonstration of the algorithm, see Salahub and Oldford (2025) <doi:10.1002/sam.70042>.
This package implements the Adaptive Multiple Importance Sampling (AMIS) algorithm, as described by Retkute et al. (2021, <doi:10.1214/21-AOAS1486>), to estimate key epidemiological parameters by combining outputs from a geostatistical model of infectious diseases (such as prevalence, incidence, or relative risk) with a disease transmission model. Utilising the resulting posterior distributions, the package enables forward projections at the local level.
This package provides non-invasive annotation of package load calls such as \codelibrary(), \codep_load(), and \coderequire() so that we can have an idea of what the packages we are loading are meant for.
Stepwise Uncertainty Reduction criterion and algorithm for sequentially learning a Gaussian Process Classifier as described in Menz et al. (2025).
The Ata method (Yapar et al. (2019) <doi:10.15672/hujms.461032>), an alternative to exponential smoothing (described in Yapar (2016) <doi:10.15672/HJMS.201614320580>, Yapar et al. (2017) <doi:10.15672/HJMS.2017.493>), is a new univariate time series forecasting method which provides innovative solutions to issues faced during the initialization and optimization stages of existing forecasting methods. Forecasting performance of the Ata method is superior to existing methods both in terms of easy implementation and accurate forecasting. It can be applied to non-seasonal or seasonal time series which can be decomposed into four components (remainder, level, trend and seasonal). This methodology performed well on the M3 and M4-competition data. This package was written based on Ali Sabri Taylanâ s PhD dissertation.
This package provides a suite of functions for analyzing sequences of events. Users can generate and code sequences based on predefined rules, with a special focus on the identification of sequences coded as ABA (when one element appears, followed by a different one, and then followed by the first). Additionally, the package offers the ability to calculate the length of consecutive ABA'-coded sequences sharing common elements. The methods implemented in this package are based on the work by Ziembowicz, K., Rychwalska, A., & Nowak, A. (2022). <doi:10.1177/10464964221118674>.
This package provides a lightweight, dependency-free toolbox for pre-processing XY data from experimental methods (i.e. any signal that can be measured along a continuous variable). This package provides methods for baseline estimation and correction, smoothing, normalization, integration and peaks detection. Baseline correction methods includes polynomial fitting as described in Lieber and Mahadevan-Jansen (2003) <doi:10.1366/000370203322554518>, Rolling Ball algorithm after Kneen and Annegarn (1996) <doi:10.1016/0168-583X(95)00908-6>, SNIP algorithm after Ryan et al. (1988) <doi:10.1016/0168-583X(88)90063-8>, 4S Peak Filling after Liland (2015) <doi:10.1016/j.mex.2015.02.009> and more.
This package provides basic functionalities to calculate the position of satellites given a known state vector. The package includes implementations of the SGP4 and SDP4 simplified perturbation models to propagate orbital state vectors, as well as utilities to read TLE files and convert coordinates between different frames of reference. Several of the functionalities of the package (including the high-precision numerical orbit propagator) require the coefficients and data included in the asteRiskData package, available in a drat repository. To install this data package, run install.packages("asteRiskData", repos="https://rafael-ayala.github.io/drat/")'. Felix R. Hoots, Ronald L. Roehrich and T.S. Kelso (1988) <https://celestrak.org/NORAD/documentation/spacetrk.pdf>. David Vallado, Paul Crawford, Richard Hujsak and T.S. Kelso (2012) <doi:10.2514/6.2006-6753>. Felix R. Hoots, Paul W. Schumacher Jr. and Robert A. Glover (2014) <doi:10.2514/1.9161>.
An implementation of the additive polynomial (AP) design matrix. It constructs and appends an AP design matrix to a data frame for use with longitudinal data subject to seasonality.