Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
We perform linear, logistic, and cox regression using the base functions lm(), glm(), and coxph() in the R software and the survival package. Likewise, we can use ols(), lrm() and cph() from the rms package for the same functionality. Each of these two sets of commands has a different focus. In many cases, we need to use both sets of commands in the same situation, e.g. we need to filter the full subset model using AIC, and we need to build a visualization graph for the final model. base.rms package can help you to switch between the two sets of commands easily.
This package implements the Bayesian Augmented Control (BAC, a.k.a. Bayesian historical data borrowing) method under clinical trial setting by calling Just Another Gibbs Sampler ('JAGS') software. In addition, the BACCT package evaluates user-specified decision rules by computing the type-I error/power, or probability of correct go/no-go decision at interim look. The evaluation can be presented numerically or graphically. Users need to have JAGS 4.0.0 or newer installed due to a compatibility issue with rjags package. Currently, the package implements the BAC method for binary outcome only. Support for continuous and survival endpoints will be added in future releases. We would like to thank AbbVie's Statistical Innovation group and Clinical Statistics group for their support in developing the BACCT package.
The goal of blocking is to provide blocking methods for record linkage and deduplication using approximate nearest neighbour (ANN) algorithms and graph techniques. It supports multiple ANN implementations via rnndescent', RcppHNSW', RcppAnnoy', and mlpack packages, and provides integration with the reclin2 package. The package generates shingles from character strings and similarity vectors for record comparison, and includes evaluation metrics for assessing blocking performance including false positive rate (FPR) and false negative rate (FNR) estimates. For details see: Papadakis et al. (2020) <doi:10.1145/3377455>, Steorts et al. (2014) <doi:10.1007/978-3-319-11257-2_20>, Dasylva and Goussanou (2021) <https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X202100200002>, Dasylva and Goussanou (2022) <doi:10.1007/s42081-022-00153-3>.
Generates robust confidence intervals for standardized regression coefficients using heteroskedasticity-consistent standard errors for models fitted by lm() as described in Dudgeon (2017) <doi:10.1007/s11336-017-9563-z>. The package can also be used to generate confidence intervals for R-squared, adjusted R-squared, and differences of standardized regression coefficients. A description of the package and code examples are presented in Pesigan, Sun, and Cheung (2023) <doi:10.1080/00273171.2023.2201277>.
BEAST2 (<https://www.beast2.org>) is a widely used Bayesian phylogenetic tool, that uses DNA/RNA/protein data and many model priors to create a posterior of jointly estimated phylogenies and parameters. BEAUti 2 (which is part of BEAST2') is a GUI tool that allows users to specify the many possible setups and generates the XML file BEAST2 needs to run. This package provides a way to create BEAST2 input files without active user input, but using R function calls instead.
For a series of binary responses, create stopping boundary with exact results after stopping, allowing updating for missing assessments.
This package provides tools for Dating Business Cycles using Harding-Pagan (Quarterly Bry-Boschan) method and various plotting features.
This package provides functions to visualize combined action data in ggplot2'. Also provides functions for producing full BRAID analysis reports with custom layouts and aesthetics, using the BRAID method originally described in Twarog et al. (2016) <doi:10.1038/srep25523>.
Compare dissolution profiles with confidence interval of similarity factor f2 using bootstrap methodology as described in the literature, such as Efron and Tibshirani (1993, ISBN:9780412042317), Davison and Hinkley (1997, ISBN:9780521573917), and Shah et al. (1998) <doi:10.1023/A:1011976615750>. The package can also be used to simulate dissolution profiles based on mathematical modelling and multivariate normal distribution.
Allows the user to generate bootstrap cards within R markdown documents. Intended for use in conjunction with R markdown HTML outputs and other formats that support the bootstrap 4 library.
Compose and send out responsive HTML email messages that render perfectly across a range of email clients and device sizes. Helper functions let the user insert embedded images, web link buttons, and ggplot2 plot objects into the message body. Messages can be sent through an SMTP server, through the Posit Connect service, or through the Mailgun API service <https://www.mailgun.com/>.
This package provides a Bayesian latent space model for complex networks, either weighted or unweighted. Given an observed input graph, the estimates for the latent coordinates of the nodes are obtained through a Bayesian MCMC algorithm. The overall likelihood of the graph depends on a fundamental probability equation, which is defined so that ties are more likely to exist between nodes whose latent space coordinates are close. The package is mainly based on the model by Hoff, Raftery and Handcock (2002) <doi:10.1198/016214502388618906> and contains some extra features (e.g., removal of the Procrustean step, weights implemented as coefficients of the latent distances, 3D plots). The original code related to the above model was retrieved from <https://www.stat.washington.edu/people/pdhoff/Code/hoff_raftery_handcock_2002_jasa/>. Users can inspect the MCMC simulation, create and customize insightful graphical representations or apply clustering techniques.
This package provides a box compatible custom language parser for the languageserver package to provide completion and signature hints in code editors.
This package provides an R interface for the Bureau of Economic Analysis (BEA) API (see <http://www.bea.gov/API/bea_web_service_api_user_guide.htm> for more information) that serves two core purposes - 1. To Extract/Transform/Load data [beaGet()] from the BEA API as R-friendly formats in the user's work space [transformation done by default in beaGet() can be modified using optional parameters; see, too, bea2List(), bea2Tab()]. 2. To enable the search of descriptive meta data [beaSearch()]. Other features of the library exist mainly as intermediate methods or are in early stages of development. Important Note - You must have an API key to use this library. Register for a key at <http://www.bea.gov/API/signup/index.cfm> .
Allows the user to apply the Bayes Linear approach to finite population with the Simple Random Sampling - BLE_SRS() - and the Stratified Simple Random Sampling design - BLE_SSRS() - (both without replacement), to the Ratio estimator (using auxiliary information) - BLE_Ratio() - and to categorical data - BLE_Categorical(). The Bayes linear estimation approach is applied to a general linear regression model for finite population prediction in BLE_Reg() and it is also possible to achieve the design based estimators using vague prior distributions. Based on Gonçalves, K.C.M, Moura, F.A.S and Migon, H.S.(2014) <https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X201400111886>.
Bimodal Gumbel distribution. General functions for performing extreme value analysis.
Function bipmod() that partitions a bipartite network into non-overlapping biclusters by maximizing bipartite modularity defined in Barber (2007) <doi:10.1103/PhysRevE.76.066102> using the bipartite version of the algorithm described in Treviño (2015) <doi:10.1088/1742-5468/2015/02/P02003>.
This package provides datasets and functions used for analysis and visualizations in the Bayes Rules! book (<https://www.bayesrulesbook.com>). The package contains a set of functions that summarize and plot Bayesian models from some conjugate families and another set of functions for evaluation of some Bayesian models.
Identifies genome-related molecular traits with significant evidence of genetic regulation and performs a bootstrap procedure to correct estimated effect sizes for over-estimation present in cis-QTL mapping studies (The "Winner's Curse"), described in Huang QQ *et al.* 2018 <doi: 10.1093/nar/gky780>.
Data about the bakers, challenges, and ratings for "The Great British Bake Off", from Wikipedia <https://en.wikipedia.org/wiki/The_Great_British_Bake_Off>.
This package provides a Bayesian regression model for discrete response, where the conditional distribution is modelled via a discrete Weibull distribution. This package provides an implementation of Metropolis-Hastings and Reversible-Jumps algorithms to draw samples from the posterior. It covers a wide range of regularizations through any two parameter prior. Examples are Laplace (Lasso), Gaussian (ridge), Uniform, Cauchy and customized priors like a mixture of priors. An extensive visual toolbox is included to check the validity of the results as well as several measures of goodness-of-fit.
It brings together several aspects of biodiversity data-cleaning in one place. bdc is organized in thematic modules related to different biodiversity dimensions, including 1) Merge datasets: standardization and integration of different datasets; 2) Pre-filter: flagging and removal of invalid or non-interpretable information, followed by data amendments; 3) Taxonomy: cleaning, parsing, and harmonization of scientific names from several taxonomic groups against taxonomic databases locally stored through the application of exact and partial matching algorithms; 4) Space: flagging of erroneous, suspect, and low-precision geographic coordinates; and 5) Time: flagging and, whenever possible, correction of inconsistent collection date. In addition, it contains features to visualize, document, and report data quality â which is essential for making data quality assessment transparent and reproducible. The reference for the methodology is Bruno et al. (2022) <doi:10.1111/2041-210X.13868>.
Several implementations of non-parametric stable bootstrap-based techniques to determine the numbers of components for Partial Least Squares linear or generalized linear regression models as well as and sparse Partial Least Squares linear or generalized linear regression models. The package collects techniques that were published in a book chapter (Magnanensi et al. 2016, The Multiple Facets of Partial Least Squares and Related Methods', <doi:10.1007/978-3-319-40643-5_18>) and two articles (Magnanensi et al. 2017, Statistics and Computing', <doi:10.1007/s11222-016-9651-4>) and (Magnanensi et al. 2021, Frontiers in Applied Mathematics and Statistics', <doi:10.3389/fams.2021.693126>).
This package provides a likelihood method is implemented to present evidence for evaluating bioequivalence (BE). The functions use bioequivalence data [area under the blood concentration-time curve (AUC) and peak concentration (Cmax)] from various crossover designs commonly used in BE studies including a fully replicated, a partially replicated design, and a conventional 2x2 crossover design. They will calculate the profile likelihoods for the mean difference, total standard deviation ratio, and within subject standard deviation ratio for a test and a reference drug. A plot of a standardized profile likelihood can be generated along with the maximum likelihood estimate and likelihood intervals, which present evidence for bioequivalence. See Liping Du and Leena Choi (2015) <doi:10.1002/pst.1661>.