This package provides a toolbox for programming Clinical Data Interchange Standards Consortium (CDISC) compliant Analysis Data Model (ADaM
) datasets in R. ADaM
datasets are a mandatory part of any New Drug or Biologics License Application submitted to the United States Food and Drug Administration (FDA). Analysis derivations are implemented in accordance with the "Analysis Data Model Implementation Guide" (CDISC Analysis Data Model Team, 2021, <https://www.cdisc.org/standards/foundational/adam>).
This package implements a web-based graphics device for animated visualisations. Modelled on the base syntax, it extends the base graphics functions to support frame-by-frame animation and keyframes animation. The target use cases are real-time animated visualisations, including agent-based models, dynamical systems, and animated diagrams. The generated visualisations can be deployed as GIF images / MP4 videos, as Shiny apps (with interactivity) or as HTML documents through embedding into R Markdown documents.
The purpose of the package is to enable an R function interface into the Statistics Denmark Databank API mainly for research purposes. The Statistics Denmark Databank API has four endpoints, see here for more information and testing the API in their console: <https://www.dst.dk/en/Statistik/brug-statistikken/muligheder-i-statistikbanken/api>. This package mimics the structure of the API and provides four main functions to match the functionality of the API endpoints.
In tumor tissue, underlying genomic instability can lead to DNA copy number alterations, e.g., copy number gains or losses. Sporadic copy number alterations occur randomly throughout the genome, whereas recurrent alterations are observed in the same genomic region across multiple independent samples, perhaps because they provide a selective growth advantage. This package implements the DiNAMIC
procedure for assessing the statistical significance of recurrent DNA copy number aberrations (Bioinformatics (2011) 27(5) 678 - 685).
Clustered or multilevel data structures are common in the assessment of differential item functioning (DIF), particularly in the context of large-scale assessment programs. This package allows users to implement extensions of the Mantel-Haenszel DIF detection procedures in the presence of multilevel data based on the work of Begg (1999) <doi:10.1111/j.0006-341X.1999.00302.x>, Begg & Paykin (2001) <doi:10.1080/00949650108812115>, and French & Finch (2013) <doi:10.1177/0013164412472341>.
Fit the hierarchical and non-hierarchical Bayesian measurement models proposed by Bullock, Imai, and Shapiro (2011) <DOI:10.1093/pan/mpr031> to analyze endorsement experiments. Endorsement experiments are a survey methodology for eliciting truthful responses to sensitive questions. This methodology is helpful when measuring support for socially sensitive political actors such as militant groups. The model is fitted with a Markov chain Monte Carlo algorithm and produces the output containing draws from the posterior distribution.
Fit and visualize the results of a Bayesian analysis of networks commonly found in psychology. The package supports fitting cross-sectional network models fitted using the packages BDgraph', bgms and BGGM'. The package provides the parameter estimates, posterior inclusion probabilities, inclusion Bayes factor, and the posterior density of the parameters. In addition, for BDgraph and bgms it allows to assess the posterior structure space. Furthermore, the package comes with an extensive suite for visualizing results.
This package contains regional Floristic Quality Assessment databases that have been approved or approved with reservations by the U.S. Army Corps of Engineers (USACE). Paired with the fqacalc R package, these data sets allow for Floristic Quality Assessment metrics to be calculated. For information on FQA see Spyreas (2019) <doi:10.1002/ecs2.2825>. Both packages were developed for the USACE by the U.S. Army Engineer Research and Development Center's Environmental Laboratory.
Turn irregular polygons (such as geographical regions) into regular or hexagonal grids. This package enables the generation of regular (square) and hexagonal grids through the package sp and then assigns the content of the existing polygons to the new grid using the Hungarian algorithm, Kuhn (1955) (<doi:10.1007/978-3-540-68279-0_2>). This prevents the need for manual generation of hexagonal grids or regular grids that are supposed to reflect existing geography.
This package provides methods for estimating borders of uniform distribution on the interval (one-dimensional) and on the elliptical domain (two-dimensional) under measurement errors. For one-dimensional case, it also estimates the length of underlying uniform domain and tests the hypothesized length against two-sided or one-sided alternatives. For two-dimensional case, it estimates the area of underlying uniform domain. It works with numerical inputs as well as with pictures in JPG format.
European Commission's Labour Market Policy (LMP) database (<https://webgate.ec.europa.eu/empl/redisstat/databrowser/explore/all/lmp?lang=en&display=card&sort=category>) provides information on labour market interventions, which are government actions to help and support the unemployed and other disadvantaged groups in the transition from unemployment or inactivity to work. It covers the EU countries and Norway. This package provides functions for downloading and importing the LMP data and metadata (codelists).
This package provides a set of tools for testing networks. It includes functions for univariate and multivariate conditional uniform graph and quadratic assignment procedure testing, and network regression. The package is a complement to Multimodal Political Networks (2021, ISBN:9781108985000), and includes various datasets used in the book. Built on the manynet package, all functions operate with matrices, edge lists, and igraph', network', and tidygraph objects, and on one-mode and two-mode (bipartite) networks.
This package provides functions for normalizing psychometric test scores. The normalization aims at correcting the metrological properties of the psychometric tests such as the ceiling and floor effects and the curvilinearity (unequal interval scaling). Functions to compute and plot predictions in the natural scale of the psychometric test from the estimates of a linear mixed model estimated on the normalized scores are also provided. See Philipps et al (2014) <doi:10.1159/000365637> for details.
An R implementation of the cross-platform, language-independent "port4me" algorithm (<https://github.com/HenrikBengtsson/port4me>
), which (1) finds a free Transmission Control Protocol ('TCP') port in [1024,65535] that the user can open, (2) is designed to work in multi-user environments, (3), gives different users, different ports, (4) gives the user the same port over time with high probability, (5) gives different ports for different software tools, and (6) requires no configuration.
This package provides tools developed to facilitate the establishment of the rank and social hierarchy for gregarious animals by the Si method developed by Kondo & Hurnik (1990)<doi:10.1016/0168-1591(90)90125-W>. It is also possible to determine the number of agonistic interactions between two individuals, sociometric and dyadics matrix from dataset obtained through electronic bins. In addition, it is possible plotting the results using a bar plot, box plot, and sociogram.
This package contains more modern tools for causal inference using regression standardization. Four general classes of models are implemented; generalized linear models, conditional generalized estimating equation models, Cox proportional hazards models, and shared frailty gamma-Weibull models. Methodological details are described in Sjölander, A. (2016) <doi:10.1007/s10654-016-0157-3>. Also includes functionality for doubly robust estimation for generalized linear models in some special cases, and the ability to implement custom models.
Perform association test within linear mixed model framework using score test integrated with Empirical Bayes for genome-wide association study. Firstly, score test was conducted for each marker under linear mixed model framework, taking into account the genetic relatedness and population structure. And then all the potentially associated markers were selected with a less stringent criterion. Finally, all the selected markers were placed into a multi-locus model to identify the true quantitative trait nucleotide.
cytofQC
is a package for initial cleaning of CyTOF
data. It uses a semi-supervised approach for labeling cells with their most likely data type (bead, doublet, debris, dead) and the probability that they belong to each label type. This package does not remove data from the dataset, but provides labels and information to aid the data user in cleaning their data. Our algorithm is able to distinguish between doublets and large cells.
This package provides alternative statistical methods for meta-analysis, including:
bivariate generalized linear mixed models for synthesizing odds ratios, relative risks, and risk differences
heterogeneity tests and measures that are robust to outliers;
measures, tests, and visualization tools for publication bias or small-study effects;
meta-analysis of diagnostic tests for synthesizing sensitivities, specificities, etc.;
meta-analysis methods for synthesizing proportions;
models for multivariate meta-analysis.
This tool proposes a new ranking algorithm that utilizes a "Y*WAASB" biplot generated by the metan'. The aim of the current package is to effectively distinguish the top-ranked genotypes in MET (Multi-Environmental Trials). For a detailed explanation of the process of obtaining "WAASB", "WAASBY" indices, and a "Y*WAASB" biplot, refer to the manual included in this package as well as the study by Olivoto & Lúcio (2020) <doi:10.1111/2041-210X.13384>. In this context, "WAASB" refers to the "Weighted Average of Absolute Scores" provided by Olivoto et al. (2019) <doi:10.2134/agronj2019.03.0220>, which quantifies the stability of genotypes across different environments using linear mixed-effect models. To run the package, you need to extract the "WAASB" and "WAASBY" coefficients using the metan and apply them. This tool utilizes PCA (Principal Component Analysis) and differentiates the entries which may be genotypes, hybrids, varieties, etc using "WAASB", "WAASBY", and a combination of the specified trait and WAASB index.
This package provides a collection of functions that have been developed to assist experimenter in modeling chemical degradation kinetic data. The selection of the appropriate degradation model and parameter estimation is carried out automatically as far as possible and is driven by a rigorous statistical interpretation of the results. The package integrates already available goodness-of-fit statistics for nonlinear models. In addition it allows data fitting with the nonlinear first-order multi-target (FOMT) model.
This package provides the basic functionality to interact with the Collatz conjecture. The parameterisation uses the same (P,a,b) notation as Conway's generalisations. Besides the function and reverse function, there is also functionality to retrieve the hailstone sequence, the "stopping time"/"total stopping time", or tree-graph. The only restriction placed on parameters is that both P and a can't be 0. For further reading, see <https://en.wikipedia.org/wiki/Collatz_conjecture>.
Enables transformation of Verbal Autopsy data collected with the WHO 2016 questionnaire (versions 1.4.1 & 1.5.1) or the WHO 2014 questionnaire for automated coding of Cause of Death using the InSilicoVA
(data.type = "WHO2016") and InterVA5
algorithms. Previous versions of this package supported user-supplied mappings (via the map_records function), but this functionality has been removed. This package is made available by WHO and the Bloomberg Data for Health Initiative.
Integrates pathway information into the differential network analysis of two gene expression datasets as described in Grimes, Potter, and Datta (2019) <doi:10.1038/s41598-019-41918-3>. Provides summary functions to break down the results at the pathway, gene, or individual connection level. The differential networks for each pathway of interest can be plotted, and the visualization will highlight any differentially expressed genes and all of the gene-gene associations that are significantly differentially connected.