Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Interface to Local Data Bank ('Bank Danych Lokalnych - bdl') API <https://api.stat.gov.pl/Home/BdlApi?lang=en> with set of useful tools like quick plotting and map generating using data from bank.
This package performs statistical estimation and inference-related computations by accessing and executing modified versions of Fortran subroutines originally published in the Association for Computing Machinery (ACM) journal Transactions on Mathematical Software (TOMS) by Bunch, Gay and Welsch (1993) <doi:10.1145/151271.151279>. The acronym BGW (from the authors last names) will be used when making reference to technical content (e.g., algorithm, methodology) that originally appeared in ACM TOMS. A key feature of BGW is that it exploits the special structure of statistical estimation problems within a trust-region-based optimization approach to produce an estimation algorithm that is much more effective than the usual practice of using optimization methods and codes originally developed for general optimization. The bgw package bundles R wrapper (and related) functions with modified Fortran source code so that it can be compiled and linked in the R environment for fast execution. This version implements a function ('bgw_mle.R') that performs maximum likelihood estimation (MLE) for a user-provided model object that computes probabilities (a.k.a. probability densities). The original motivation for producing this package was to provide fast, efficient, and reliable MLE for discrete choice models that can be called from the Apollo choice modelling R package ( see <http://www.apollochoicemodelling.com>). Starting with the release of Apollo 3.0, BGW is the default estimation package. However, estimation can also be performed using BGW in a stand-alone fashion without using Apollo (as shown in simple examples included in the package). Note also that BGW capabilities are not limited to MLE, and future extension to other estimators (e.g., nonlinear least squares, generalized method of moments, etc.) is possible. The Fortran code included in bgw was modified by one of the original BGW authors (Bunch) under his rights as confirmed by direct consultation with the ACM Intellectual Property and Rights Manager. See <https://authors.acm.org/author-resources/author-rights>. The main requirement is clear citation of the original publication (see above).
Bayesian purity model to estimate tumor purity using methylation array data (DNA methylation Infinium 450K array data) without reference samples.
Binomial Haar-Fisz transforms for Gaussianization as in Nunes and Nason (2009).
Decomposition of time series into trend, seasonal, and remainder components with methods for detecting and characterizing abrupt changes within the trend and seasonal components. BFAST can be used to analyze different types of satellite image time series and can be applied to other disciplines dealing with seasonal or non-seasonal time series, such as hydrology, climatology, and econometrics. The algorithm can be extended to label detected changes with information on the parameters of the fitted piecewise linear models. BFAST monitoring functionality is described in Verbesselt et al. (2010) <doi:10.1016/j.rse.2009.08.014>. BFAST monitor provides functionality to detect disturbance in near real-time based on BFAST'- type models, and is described in Verbesselt et al. (2012) <doi:10.1016/j.rse.2012.02.022>. BFAST Lite approach is a flexible approach that handles missing data without interpolation, and will be described in an upcoming paper. Furthermore, different models can now be used to fit the time series data and detect structural changes (breaks).
Implementation of Bayesian multi-task regression models and was developed within the context of imaging genetics. The package can currently fit two models. The Bayesian group sparse multi-task regression model of Greenlaw et al. (2017)<doi:10.1093/bioinformatics/btx215> can be fit with implementation using Gibbs sampling. An extension of this model developed by Song, Ge et al. to accommodate both spatial correlation as well as correlation across brain hemispheres can also be fit using either mean-field variational Bayes or Gibbs sampling. The model can also be used more generally for multivariate (non-imaging) phenotypes with spatial correlation.
This package provides functions for blind source separation over multivariate spatial data, and useful statistics for evaluating performance of estimation on mixing matrix. BSSoverSpace is based on an eigen analysis of a positive definite matrix defined in terms of multiple normalized spatial local covariance matrices, and thus can handle moderately high-dimensional random fields. This package is an implementation of the method described in Zhang, Hao and Yao (2022)<arXiv:2201.02023>.
Perform record linkage on streaming files using recursive Bayesian updating.
This package contains specialised analyses and visualisation tools for behavior change science. These facilitate conducting determinant studies (for example, using confidence interval-based estimation of relevance, CIBER, or CIBERlite plots, see Crutzen, Noijen & Peters (2017) <doi:10/ghtfz9>), systematically developing, reporting, and analysing interventions (for example, using Acyclic Behavior Change Diagrams), and reporting about intervention effectiveness (for example, using the Numbers Needed for Change, see Gruijters & Peters (2017) <doi:10/jzkt>), and computing the required sample size (using the Meaningful Change Definition, see Gruijters & Peters (2020) <doi:10/ghpnx8>). This package is especially useful for researchers in the field of behavior change or health psychology and to behavior change professionals such as intervention developers and prevention workers.
This package contains Bayesian implementations of the Mixed-Effects Accelerated Failure Time (MEAFT) models for censored data. Those can be not only right-censored but also interval-censored, doubly-interval-censored or misclassified interval-censored. The methods implemented in the package have been published in Komárek and Lesaffre (2006, Stat. Modelling) <doi:10.1191/1471082X06st107oa>, Komárek, Lesaffre and Legrand (2007, Stat. in Medicine) <doi:10.1002/sim.3083>, Komárek and Lesaffre (2007, Stat. Sinica) <https://www3.stat.sinica.edu.tw/statistica/oldpdf/A17n27.pdf>, Komárek and Lesaffre (2008, JASA) <doi:10.1198/016214507000000563>, Garcà a-Zattera, Jara and Komárek (2016, Biometrics) <doi:10.1111/biom.12424>.
This package provides a way to simulate from the prior distribution of Bayesian trees by Chipman et al. (1998) <DOI:10.2307/2669832>. The prior distribution of Bayesian trees is highly dependent on the design matrix X, therefore using the suggested hyperparameters by Chipman et al. (1998) <DOI:10.2307/2669832> is not recommended and could lead to unexpected prior distribution. This work is part of my master thesis (expected 2016).
This package provides numerous utilities for acquiring and analyzing baseball data from online sources such as Baseball Reference <https://www.baseball-reference.com/>, FanGraphs <https://www.fangraphs.com/>, and the MLB Stats API <https://www.mlb.com/>.
An implementation of the Black-Litterman Model and Attilio Meucci's copula opinion pooling framework as described in Meucci, Attilio (2005) <doi:10.2139/ssrn.848407>, Meucci, Attilio (2006) <doi:10.2139/ssrn.872577> and Meucci, Attilio (2008) <doi:10.2139/ssrn.1117574>.
This package implements a class and methods to work with sets, doing intersection, union, complementary sets, power sets, cartesian product and other set operations in a "tidy" way. These set operations are available for both classical sets and fuzzy sets. Import sets from several formats or from other several data structures.
This package provides functions for the Bayesian analysis of some simple commonly-used models, without using Markov Chain Monte Carlo (MCMC) methods such as Gibbs sampling. The rust package <https://cran.r-project.org/package=rust> is used to simulate a random sample from the required posterior distribution, using the generalized ratio-of-uniforms method. See Wakefield, Gelfand and Smith (1991) <DOI:10.1007/BF01889987> for details. At the moment three conjugate hierarchical models are available: beta-binomial, gamma-Poisson and a 1-way analysis of variance (ANOVA).
This package provides a collection of models for bivariate alternating recurrent event data analysis. Includes non-parametric and semi-parametric methods.
Implementation of algorithms for cutting numerical values exhibiting a potentially highly skewed distribution into evenly distributed groups (bins). This functionality can be applied for binning discrete values, such as counts, as well as for discretization of continuous values, for example, during generation of features used in machine learning algorithms.
This package produces an economic evaluation of a sample of suitable variables of cost and effectiveness / utility for two or more interventions, e.g. from a Bayesian model in the form of MCMC simulations. This package computes the most cost-effective alternative and produces graphical summaries and probabilistic sensitivity analysis, see Baio et al (2017) <doi:10.1007/978-3-319-55718-2>.
Reproducible and automated analysis of multiplex bead assays such as CBA (Morgan et al. 2004; <doi: 10.1016/j.clim.2003.11.017>), LEGENDplex (Yu et al. 2015; <doi: 10.1084/jem.20142318>), and MACSPlex (Miltenyi Biotec 2014; Application note: Data acquisition and analysis without the MACSQuant analyzer; <https://www.miltenyibiotec.com/upload/assets/IM0021608.PDF>). The package provides functions for streamlined reading of fcs files, and identification of bead clusters and analyte expression. The package eases the calculation of standard curves and the subsequent calculation of the analyte concentration.
Data sets and functions for chi-squared Hardy-Weinberg and case-control association tests of highly polymorphic genetic data [e.g., human leukocyte antigen (HLA) data]. Performs association tests at multiple levels of polymorphism (haplotype, locus and HLA amino-acids) as described in Pappas DJ, Marin W, Hollenbach JA, Mack SJ (2016) <doi:10.1016/j.humimm.2015.12.006>. Combines rare variants to a common class to account for sparse cells in tables as described by Hollenbach JA, Mack SJ, Thomson G, Gourraud PA (2012) <doi:10.1007/978-1-61779-842-9_14>.
This project aims to enable the method of Path Analysis to infer causalities from data. For this we propose a hybrid approach, which uses Bayesian network structure learning algorithms from data to create the input file for creation of a PA model. The process is performed in a semi-automatic way by our intermediate algorithm, allowing novice researchers to create and evaluate their own PA models from a data set. The references used for this project are: Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques. MIT press. <doi:10.1017/S0269888910000275>. Nagarajan, R., Scutari, M., & Lèbre, S. (2013). Bayesian networks in r. Springer, 122, 125-127. Scutari, M., & Denis, J. B. <doi:10.1007/978-1-4614-6446-4>. Scutari M (2010). Bayesian networks: with examples in R. Chapman and Hall/CRC. <doi:10.1201/b17065>. Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1 - 36. <doi:10.18637/jss.v048.i02>.
Highly efficient functions for estimating various rank (centrality) measures of nodes in bipartite graphs (two-mode networks). Includes methods for estimating HITS, CoHITS, BGRM, and BiRank with implementation primarily inspired by He et al. (2016) <doi:10.1109/TKDE.2016.2611584>. Also provides easy-to-use tools for efficiently estimating PageRank in one-mode graphs, incorporating or removing edge-weights during rank estimation, projecting two-mode graphs to one-mode, and for converting edgelists and matrices to sparseMatrix format. Best of all, the package's rank estimators can work directly with common formats of network data including edgelists (class data.frame, data.table, or tbl_df) and adjacency matrices (class matrix or dgCMatrix).
This package provides a simple tool to quantify the amount of transmission of an infectious disease of interest occurring within and between population groups. bumblebee uses counts of observed directed transmission pairs, identified phylogenetically from deep-sequence data or from epidemiological contacts, to quantify transmission flows within and between population groups accounting for sampling heterogeneity. Population groups might include: geographical areas (e.g. communities, regions), demographic groups (e.g. age, gender) or arms of a randomized clinical trial. See the bumblebee website for statistical theory, documentation and examples <https://magosil86.github.io/bumblebee/>.
Routine for fitting regression models for binary rare events with linear and nonlinear covariate effects when using the quantile function of the Generalized Extreme Value random variable.