Computes the Extended Chen-Poisson (ecp) distribution, survival, density, hazard, cumulative hazard and quantile functions. It also allows to generate a pseudo-random sample from this distribution. The corresponding graphics are available. Functions to obtain measures of skewness and kurtosis, k-th raw moments, conditional k-th moments and mean residual life function were added. For details about ecp distribution, see Sousa-Ferreira, I., Abreu, A.M. & Rocha, C. (2023). <doi:10.57805/revstat.v21i2.405>.
Analyze functional data and its change points. Includes functionality to store and process data, summarize and validate assumptions, characterize and perform inference of change points, and provide visualizations. Data is stored as discretely collected observations without requiring the selection of basis functions. For more details see chapter 8 of Horvath and Rice (2024) <doi:10.1007/978-3-031-51609-2>. Additional papers are forthcoming. Focused works are also included in the documentation of corresponding functions.
Statistical tests widely utilized in biostatistics, public policy, and law. Along with the well-known tests for equality of means and variances, randomness, and measures of relative variability, the package contains new robust tests of symmetry, omnibus and directional tests of normality, and their graphical counterparts such as robust QQ plot, robust trend tests for variances, etc. All implemented tests and methods are illustrated by simulations and real-life examples from legal statistics, economics, and biostatistics.
This package provides statistical components, tables, and graphs that are useful in Quarto and RMarkdown reports and that produce Quarto elements for special formatting such as tabs and marginal notes and graphs. Some of the functions produce entire report sections with tabs, e.g., the missing data report created by missChk()
. Functions for inserting variables and tables inside graphviz and mermaid diagrams are included, and so are special clinical trial graphics for adverse event reporting.
Tool for statistical simulations that have two components. One component generates the data and the other one analyzes the data. The main aims of the package are the reduction of the administrative source code (mainly loops and management code for the results) and a simple applicability of the package that allows the user to quickly learn how to work with it. Parallel computing is also supported. Finally, convenient functions are provided to summarize the simulation results.
Several statistical test functions as well as a function for exploratory data analysis to investigate classifiers allocating individuals to one of three disjoint and ordered classes. In a single classifier assessment the discriminatory power is compared to classification by chance. In a comparison of two classifiers the null hypothesis corresponds to equal discriminatory power of the two classifiers. See also "ROC Analysis for Classification and Prediction in Practice" by Nakas, Bantis and Gatsonis (2023), ISBN 9781482233704.
This package provides a tidy interface for integrating large language model (LLM) APIs such as Claude', Openai', Gemini','Mistral and local models via Ollama into R workflows. The package supports text and media-based interactions, interactive message history, batch request APIs, and a tidy, pipeline-oriented interface for streamlined integration into data workflows. Web services are available at <https://www.anthropic.com>, <https://openai.com>, <https://aistudio.google.com/>, <https://mistral.ai/> and <https://ollama.com>.
An R API providing easy access to a relational database with macroeconomic, financial and development related time series data for Uganda. Overall more than 5000 series at varying frequency (daily, monthly, quarterly, annual in fiscal or calendar years) can be accessed through the API. The data is provided by the Bank of Uganda, the Ugandan Ministry of Finance, Planning and Economic Development, the IMF and the World Bank. The database is being updated once a month.
Various semiparametric and nonparametric statistical tools for immune correlates analysis of vaccine clinical trial data. This includes calculation of summary statistics and estimation of risk, vaccine efficacy, controlled effects (controlled risk and controlled vaccine efficacy), and mediation effects (natural direct effect, natural indirect effect, proportion mediated). See Gilbert P, Fong Y, Kenny A, and Carone, M (2022) <doi:10.1093/biostatistics/kxac024> and Fay MP and Follmann DA (2023) <doi:10.48550/arXiv.2208.06465>
.
This package provides tools to perform hierarchical inference for one or multiple studies / data sets based on high-dimensional multivariate (generalised) linear models. A possible application is to perform hierarchical inference for GWA studies to find significant groups or single SNPs (if the signal is strong) in a data-driven and automated procedure. The method is based on an efficient hierarchical multiple testing correction and controls the FWER. The functions can easily be run in parallel.
Set of utility functions for viral quasispecies analysis with NGS data. Most functions are equally useful for metagenomic studies. There are three main types: (1) data manipulation and exploration—functions useful for converting reads to haplotypes and frequencies, repairing reads, intersecting strand haplotypes, and visualizing haplotype alignments. (2) diversity indices—functions to compute diversity and entropy, in which incidence, abundance, and functional indices are considered. (3) data simulation—functions useful for generating random viral quasispecies data.
Archimax copulas are a mixture of Archimedean and EV copulas. This package provides definitions of several parametric families of generator and dependence function, computes CDF and PDF, estimates parameters, tests for goodness of fit, generates random sample and checks copula properties for custom constructs. In the 2-dimensional case explicit formulas for density are used, contrary to higher dimensions when all derivatives are linearly approximated. Several non-archimax families (normal, FGM, Plackett) are provided as well.
This package provides an R interface to Extreme Gradient Boosting, which is an efficient implementation of the gradient boosting framework from Chen and Guestrin (2016). The package includes efficient linear model solver and tree learning algorithms. The package can automatically do parallel computation on a single machine. It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that users are also allowed to define their own objectives easily.
Create a pie like plot to visualise if the aim or several aims of a project is achieved or close to be achieved i.e the aim is achieved when the point is at the center of the pie plot. Imagine it's like a dartboard and the center means 100% completeness/achievement. Achievement can also be understood as 100% coverage. The standard distribution of completeness allocated in the pie plot is 50%, 80% and 100% completeness.
Dynamic path analysis with estimation of the corresponding direct, indirect, and total effects, based on Fosen et al., (2006) <doi:10.1007/s10985-006-9004-2>. The main outcome of interest is a counting process from survival analysis (or recurrent events) data. At each time of event, ordinary linear regression is used to estimate the relation between the covariates, while Aalen's additive hazard model is used for the regression of the counting process on the covariates.
Main function "decode" is used to decode coded key values to plain text. Function "code" can be used to code plain text to code if there is a 1:1 relation between the two. The concept relies on keyvalue objects used for translation. There are several keyvalue objects included in the areas of geographical regional codes, administrative health care unit codes, diagnosis codes and more. It is also easy to extend the use by arbitrary code sets.
Collection of R functions and data sets for the support of spatial ecology analyses with a focus on pre, core and post modelling analyses of species distribution, niche quantification and community assembly. Written by current and former members and collaborators of the ecospat group of Antoine Guisan, Department of Ecology and Evolution (DEE) and Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Switzerland. Read Di Cola et al. (2016) <doi:10.1111/ecog.02671> for details.
It allows running EViews (<https://eviews.com>) program from R, R Markdown and Quarto documents. EViews (Econometric Views) is a statistical software for Econometric analysis. This package integrates EViews and R and also serves as an EViews Knit-Engine for knitr package. Write all your EViews commands in R, R Markdown or Quarto documents. For details, please consult our peer-review article Mati S., Civcir I. and Abba S.I (2023) <doi:10.32614/RJ-2023-045>.
This package provides a consistent, unified and extensible framework for estimation of parameters for probability distributions, including parameter estimation procedures that allow for weighted samples; the current set of distributions included are: the standard beta, The four-parameter beta, Burr, gamma, Gumbel, Johnson SB and SU, Laplace, logistic, normal, symmetric truncated normal, truncated normal, symmetric-reflected truncated beta, standard symmetric-reflected truncated beta, triangular, uniform, and Weibull distributions; decision criteria and selections based on these decision criteria.
We consider optimal subset selection in the setting that one needs to use only one data subset to represent the whole data set with minimum information loss, and devise a novel intersection-based criterion on selecting optimal subset, called as the FPC criterion, to handle with the optimal sub-estimator in distributed principal component analysis; That is, the FPCdpca. The philosophy of the package is described in Guo G. (2025) <doi:10.1016/j.physa.2024.130308>.
We provide the monthly number of HIV and antiretroviral therapy (ART) cases of male, female, children and transgender as well as for the whole of Pakistan reported at various treatment centers in Pakistan from January 2016 to December 2021. Related works include: a) Imran, M., Nasir, J. A., & Riaz, S. (2018). Regional pattern of HIV cases in Pakistan. Journal of Postgraduate Medical Institute, 32(1), 9-13. <https://jpmi.org.pk/index.php/jpmi/article/view/2108>.
Categorization and scoring of injury severity typically involves trained personnel with access to injured persons or their medical records. icdpicr contains a function that provides automated calculation of Abbreviated Injury Scale ('AIS') and Injury Severity Score ('ISS') from International Classification of Diseases ('ICD') codes and may be a useful substitute to manual injury severity scoring. ICDPIC was originally developed in Stata', and icdpicr is an open-access update that accepts both ICD-9 and ICD-10 codes.
This package provides access to the LDlink API (<https://ldlink.nih.gov/?tab=apiaccess>) using the R console. This programmatic access facilitates researchers who are interested in performing batch queries in 1000 Genomes Project (2015) <doi:10.1038/nature15393> data using LDlink'. LDlink is an interactive and powerful suite of web-based tools for querying germline variants in human population groups of interest. For more details, please see Machiela et al. (2015) <doi:10.1093/bioinformatics/btv402>.
This package creates a consensus genetic map by merging linkage maps from different populations. The software uses linear programming (LP) to efficiently minimize the mean absolute error between the consensus map and the linkage maps. This minimization is performed subject to linear inequality constraints that ensure the ordering of the markers in the linkage maps is preserved. When marker order is inconsistent between linkage maps, a minimum set of ordinal constraints is deleted to resolve the conflicts.