Orders a data-set consisting of an ensemble of probability density functions on the same x-grid. Visualizes a box-plot of these functions based on the notion of distance determined by the user. Reports outliers based on the distance chosen and the scaling factor for an interquartile range rule. For further details, see: Alexander C. Murph et al. (2023). "Visualization and Outlier Detection for Probability Density Function Ensembles." <https://sirmurphalot.github.io/publications>.
This package provides wrap functions to export and import graphics and data frames in R to microsoft office. And This package also provide write out figures with lots of different formats. Since people may work on the platform without GUI support, the package also provide function to easily write out figures to lots of different type of formats. Now this package provide function to extract colors from all types of figures and pdf files.
Automated model selection and model-averaging. Provides a wrapper for glm and other functions, automatically generating all possible models (under constraints set by the user) with the specified response and explanatory variables, and finding the best models in terms of some Information Criterion (AIC, AICc or BIC). Can handle very large numbers of candidate models. Features a Genetic Algorithm to find the best models when an exhaustive screening of the candidates is not feasible.
Execute Latent Class Analysis (LCA) and Latent Class Regression (LCR) by using Generalized Structured Component Analysis (GSCA). This is explained in Ryoo, Park, and Kim (2019) <doi:10.1007/s41237-019-00084-6>. It estimates the parameters of latent class prevalence and item response probability in LCA with a single line comment. It also provides graphs of item response probabilities. In addition, the package enables to estimate the relationship between the prevalence and covariates.
Cellular cooperation compromises the established method of calculating clonogenic activity from limiting dilution assay (LDA) data. This tool provides functions that enable robust analysis in presence or absence of cellular cooperation. The implemented method incorporates the same cooperativity module to model the non-linearity associated with cellular cooperation as known from the colony formation assay (Brix et al. (2021) <doi:10.1038/s41596-021-00615-0>: "Analysis of clonogenic growth in vitro." Nature protocols).
Interface to the Google Maps APIs: (1) routing directions based on the Directions API, returned as sf objects, either as single feature per alternative route, or a single feature per segment per alternative route; (2) travel distance or time matrices based on the Distance Matrix API; (3) geocoded locations based on the Geocode API, returned as sf objects, either points or bounds; (4) map images using the Maps Static API, returned as stars objects.
Regress network responses (both directed and undirected) onto covariates of interest that may be actor-, relation-, or network-valued. In addition, compute principled variance estimates of the coefficients assuming that the errors are jointly exchangeable. Missing data is accommodated. Additionally implements building and inversion of covariance matrices under joint exchangeability, and generates random covariance matrices from this class. For more detail on methods, see Marrs, Fosdick, and McCormick
(2017) <arXiv:1701.05530>
.
This package provides functions for fitting abundance distributions over environmental gradients to the species in ecological communities, and tools for simulating the fossil assemblages from those abundance models for such communities, as well as simulating assemblages across various patterns of sedimentary history and sampling. These tools are for particular use with fossil records with detailed age models and abundance distributions used for calculating environmental gradients from ordinations or other indices based on fossil assemblages.
Applying the global sensitivity analysis workflow to investigate the parameter uncertainty and sensitivity in physiologically based kinetic (PK) models, especially the physiologically based pharmacokinetic/toxicokinetic model with multivariate outputs. The package also provides some functions to check the convergence and sensitivity of model parameters. The workflow was first mentioned in Hsieh et al., (2018) <doi:10.3389/fphar.2018.00588>, then further refined (Hsieh et al., 2020 <doi:10.1016/j.softx.2020.100609>).
The BioPlex
package implements access to the BioPlex
protein-protein interaction networks and related resources from within R. Besides protein-protein interaction networks for HEK293 and HCT116 cells, this includes access to CORUM protein complex data, and transcriptome and proteome data for the two cell lines. Functionality focuses on importing the various data resources and storing them in dedicated Bioconductor data structures, as a foundation for integrative downstream analysis of the data.
This package implements topological gene set analysis using a two-step empirical approach. It exploits graph decomposition theory to create a junction tree and reconstruct the most relevant signal path. In the first step clipper selects significant pathways according to statistical tests on the means and the concentration matrices of the graphs derived from pathway topologies. Then, it "clips" the whole pathway identifying the signal paths having the greatest association with a specific phenotype.
Spaniel includes a series of tools to aid the quality control and analysis of Spatial Transcriptomics data. Spaniel can import data from either the original Spatial Transcriptomics system or 10X Visium technology. The package contains functions to create a SingleCellExperiment
Seurat object and provides a method of loading a histologial image into R. The spanielPlot
function allows visualisation of metrics contained within the S4 object overlaid onto the image of the tissue.
Statial is a suite of functions for identifying changes in cell state. The functionality provided by Statial provides robust quantification of cell type localisation which are invariant to changes in tissue structure. In addition to this Statial uncovers changes in marker expression associated with varying levels of localisation. These features can be used to explore how the structure and function of different cell types may be altered by the agents they are surrounded with.
The airpart package identifies sets of genes displaying differential cell-type-specific allelic imbalance across cell types or states, utilizing single-cell allelic counts. It makes use of a generalized fused lasso with binomial observations of allelic counts to partition cell types by their allelic imbalance. Alternatively, a nonparametric method for partitioning cell types is offered. The package includes a number of visualizations and quality control functions for examining single cell allelic imbalance datasets.
This package contains procedures for depth-based supervised learning, which are entirely non-parametric, in particular the DDalpha-procedure (Lange, Mosler and Mozharovskyi, 2014). The training data sample is transformed by a statistical depth function to a compact low-dimensional space, where the final classification is done. It also offers an extension to functional data and routines for calculating certain notions of statistical depth functions. 50 multivariate and 5 functional classification problems are included.
This package is a port of the new http://matplotlib.org/ color maps (viridis
--the default--, magma
, plasma
, and inferno
) to R. These color maps are designed in such a way that they will analytically be perfectly perceptually-uniform, both in regular form and also when converted to black-and-white. They are also designed to be perceived by readers with the most common form of color blindness.
This package provides a collection of R functions to perform nonparametric analysis of covariance for regression curves or surfaces. Testing the equality or parallelism of nonparametric curves or surfaces is equivalent to analysis of variance (ANOVA) or analysis of covariance (ANCOVA) for one-sample functional data. Three different testing methods are available in the package, including one based on L-2 distance, one based on an ANOVA statistic, and one based on variance estimators.
This package allows for fast, correct, consistent, portable, as well as convenient character string/text processing in every locale and any native encoding. Owing to the use of the ICU library, the package provides R users with platform-independent functions known to Java, Perl, Python, PHP, and Ruby programmers. Among available features there are: pattern searching (e.g. via regular expressions), random string generation, string collation, transliteration, concatenation, date-time formatting and parsing, etc.
This package implements a web-based graphics device for animated visualisations. Modelled on the base syntax, it extends the base graphics functions to support frame-by-frame animation and keyframes animation. The target use cases are real-time animated visualisations, including agent-based models, dynamical systems, and animated diagrams. The generated visualisations can be deployed as GIF images / MP4 videos, as Shiny apps (with interactivity) or as HTML documents through embedding into R Markdown documents.
This package provides a toolbox for programming Clinical Data Interchange Standards Consortium (CDISC) compliant Analysis Data Model (ADaM
) datasets in R. ADaM
datasets are a mandatory part of any New Drug or Biologics License Application submitted to the United States Food and Drug Administration (FDA). Analysis derivations are implemented in accordance with the "Analysis Data Model Implementation Guide" (CDISC Analysis Data Model Team, 2021, <https://www.cdisc.org/standards/foundational/adam>).
Discrete splines are a class of univariate piecewise polynomial functions which are analogous to splines, but whose smoothness is defined via divided differences rather than derivatives. Tools for efficient computations relating to discrete splines are provided here. These tools include discrete differentiation and integration, various matrix computations with discrete derivative or discrete spline bases matrices, and interpolation within discrete spline spaces. These techniques are described in Tibshirani (2020) <doi:10.48550/arXiv.2003.03886>
.
In tumor tissue, underlying genomic instability can lead to DNA copy number alterations, e.g., copy number gains or losses. Sporadic copy number alterations occur randomly throughout the genome, whereas recurrent alterations are observed in the same genomic region across multiple independent samples, perhaps because they provide a selective growth advantage. This package implements the DiNAMIC
procedure for assessing the statistical significance of recurrent DNA copy number aberrations (Bioinformatics (2011) 27(5) 678 - 685).
Clustered or multilevel data structures are common in the assessment of differential item functioning (DIF), particularly in the context of large-scale assessment programs. This package allows users to implement extensions of the Mantel-Haenszel DIF detection procedures in the presence of multilevel data based on the work of Begg (1999) <doi:10.1111/j.0006-341X.1999.00302.x>, Begg & Paykin (2001) <doi:10.1080/00949650108812115>, and French & Finch (2013) <doi:10.1177/0013164412472341>.
The purpose of the package is to enable an R function interface into the Statistics Denmark Databank API mainly for research purposes. The Statistics Denmark Databank API has four endpoints, see here for more information and testing the API in their console: <https://www.dst.dk/en/Statistik/brug-statistikken/muligheder-i-statistikbanken/api>. This package mimics the structure of the API and provides four main functions to match the functionality of the API endpoints.