Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Model adsorption behavior using classical isotherms, including Langmuir, Freundlich, Brunauerâ Emmettâ Teller (BET), and Temkin models. The package supports parameter estimation through both linearized and non-linear fitting techniques and generates high-quality plots for model diagnostics. It is intended for environmental scientists, chemists, and researchers working on adsorption phenomena in soils, water treatment, and material sciences. Functions are compatible with base R and ggplot2 for visualization.
This package provides a stacking solution for modeling imbalanced and severely skewed data. It automates the process of building homogeneous or heterogeneous stacked ensemble models by selecting "best" models according to different criteria. In doing so, it strategically searches for and selects diverse, high-performing base-learners to construct ensemble models optimized for skewed data. This package is particularly useful for addressing class imbalance in datasets, ensuring robust and effective model outcomes through advanced ensemble strategies which aim to stabilize the model, reduce its overfitting, and further improve its generalizability.
Implementation of gene-level rare variant association tests targeting allelic series: genes where increasingly deleterious mutations have increasingly large phenotypic effects. The COding-variant Allelic Series Test (COAST) operates on the benign missense variants (BMVs), deleterious missense variants (DMVs), and protein truncating variants (PTVs) within a gene. COAST uses a set of adjustable weights that tailor the test towards rejecting the null hypothesis for genes where the average magnitude of effect increases monotonically from BMVs to DMVs to PTVs. See McCaw ZR, Oâ Dushlaine C, Somineni H, Bereket M, Klein C, Karaletsos T, Casale FP, Koller D, Soare TW. (2023) "An allelic series rare variant association test for candidate gene discovery" <doi:10.1016/j.ajhg.2023.07.001>.
This package provides a set of functions to access the ARDECO (Annual Regional Database of the European Commission) data directly from the official ARDECO public repository through the exploitation of the ARDECO APIs. The APIs are completely transparent to the user and the provided functions provide a direct access to the ARDECO data. The ARDECO database is a collection of variables related to demography, employment, labour market, domestic product, capital formation. Each variable can be exposed in one or more units of measure as well as refers to total values plus additional dimensions like economic sectors, gender, age classes. Data can be also aggregated at country level according to the tercet classes as defined by EUROSTAT. The description of the ARDECO database can be found at the following URL <https://territorial.ec.europa.eu/ardeco>.
Animate Shiny and R Markdown content when it comes into view using animate-css effects thanks to jQuery AniView'.
This package provides access to biographical and political data about Australian federal politicians who served between 1901 and 2021. This enhances how reproducible research is that uses this data.
Tracking accrual in clinical trials is important for trial success. If accrual is too slow, the trial will take too long and be too expensive. If accrual is much faster than expected, time sensitive tasks such as the writing of statistical analysis plans might need to be rushed. accrualPlot provides functions to aid the tracking of accrual and predict when a trial will reach it's intended sample size.
The Langmuir and Freundlich adsorption isotherms are pivotal in characterizing adsorption processes, essential across various scientific disciplines. Proper interpretation of adsorption isotherms involves robust fitting of data to the models, accurate estimation of parameters, and efficiency evaluation of the models, both in linear and non-linear forms. For researchers and practitioners in the fields of chemistry, environmental science, soil science, and engineering, a comprehensive package that satisfies all these requirements would be ideal for accurate and efficient analysis of adsorption data, precise model selection and validation for rigorous scientific inquiry and real-world applications. Details can be found in Langmuir (1918) <doi:10.1021/ja02242a004> and Giles (1973) <doi:10.1111/j.1478-4408.1973.tb03158.x>.
Miscellaneous astronomy functions, utilities, and data.
An interface to the API for arXiv', a repository of electronic preprints for computer science, mathematics, physics, quantitative biology, quantitative finance, and statistics.
This package provides a collection of functions for computing centrographic statistics (e.g., standard distance, standard deviation ellipse, standard deviation box) for observations taken at point locations. Separate plotting functions have been developed for each measure. Users interested in writing results to ESRI shapefiles can do so by using results from aspace functions as inputs to the convert.to.shapefile() and write.shapefile() functions in the shapefiles library. We intend to provide terra integration for geographic data in a future release. The aspace package was originally conceived to aid in the analysis of spatial patterns of travel behaviour (see Buliung and Remmel 2008 <doi:10.1007/s10109-008-0063-7>).
This package provides an automatic aggregation tool to manage point data privacy, intended to be helpful for the production of official spatial data and for researchers. The package pursues the data accuracy at the smallest possible areas preventing individual information disclosure. The methodology, based on hierarchical geographic data structures performs aggregation and local suppression of point data to ensure privacy as described in Lagonigro, R., Oller, R., Martori J.C. (2017) <doi:10.2436/20.8080.02.55>. The data structures are created following the guidelines for grid datasets from the European Forum for Geography and Statistics.
This package provides a toolbox to read all R files inside a package and automatically generate @importFrom roxygen2 tags in the right place. Includes a shiny application to review the changes before applying them.
This package provides functions are provided for defining animated, interactive data visualizations in R code, and rendering on a web page. The 2018 Journal of Computational and Graphical Statistics paper, <doi:10.1080/10618600.2018.1513367> describes the concepts implemented.
An application for analysis of Adverse Events, as described in Chen, et al., (2023) <doi:10.3390/cancers15092521>. The required data for the application includes demographics, follow up, adverse event, drug administration and optional tumor measurement data. The app can produce swimmers plots of adverse events, Kaplan-Meier plots and Cox Proportional Hazards model results for the association of adverse event biomarkers and overall survival and progression free survival. The adverse event biomarkers include occurrence of grade 3, low grade (1-2), and treatment related adverse events. Plots and tables of results are downloadable.
Helper functions for working with Regional Ocean Modeling System ROMS output. See <https://www.myroms.org/> for more information about ROMS'.
An R Shiny application for visual and statistical exploration and web communication of archaeological spatial data, either remains or sites. It offers interactive 3D and 2D visualisations (cross sections and maps of remains, timeline of the work made in a site) which can be exported in SVG and HTML formats. It performs simple spatial statistics (convex hull, regression surfaces, 2D kernel density estimation) and allows exporting data to other online applications for more complex methods. archeoViz can be used offline locally or deployed on a server, either with interactive input of data or with a static data set. Example is provided at <https://analytics.huma-num.fr/archeoviz/en>.
An unofficial companion to "Applied Logistic Regression" by D.W. Hosmer, S. Lemeshow and R.X. Sturdivant (3rd ed., 2013) containing the dataset used in the book.
Bindings to FFmpeg <http://www.ffmpeg.org/> AV library for working with audio and video in R. Generates high quality video from images or R graphics with custom audio. Also offers high performance tools for reading raw audio, creating spectrograms', and converting between countless audio / video formats. This package interfaces directly to the C API and does not require any command line utilities.
Display air quality model output and monitoring data using scatterplots, grids, and legends.
Another implementation of object-orientation in R. It provides syntactic sugar for the S4 class system and two alternative new implementations. One is an experimental version built around S4 and the other one makes it more convenient to work with lists as objects.
The company, Algorithmia, houses the largest marketplace of online algorithms. This package essentially holds a bunch of REST wrappers that make it very easy to call algorithms in the Algorithmia platform and access files and directories in the Algorithmia data API. To learn more about the services they offer and the algorithms in the platform visit <http://algorithmia.com>. More information for developers can be found at <https://algorithmia.com/developers>.
The Algorithms for Quantitative Pedology (AQP) project was started in 2009 to organize a loosely-related set of concepts and source code on the topic of soil profile visualization, aggregation, and classification into this package (aqp). Over the past 8 years, the project has grown into a suite of related R packages that enhance and simplify the quantitative analysis of soil profile data. Central to the AQP project is a new vocabulary of specialized functions and data structures that can accommodate the inherent complexity of soil profile information; freeing the scientist to focus on ideas rather than boilerplate data processing tasks <doi:10.1016/j.cageo.2012.10.020>. These functions and data structures have been extensively tested and documented, applied to projects involving hundreds of thousands of soil profiles, and deeply integrated into widely used tools such as SoilWeb <https://casoilresource.lawr.ucdavis.edu/soilweb-apps>. Components of the AQP project (aqp, soilDB, sharpshootR, soilReports packages) serve an important role in routine data analysis within the USDA-NRCS Soil Science Division. The AQP suite of R packages offer a convenient platform for bridging the gap between pedometric theory and practice.
This package provides a tool for calculating agreement interval of two measurement methods (Jason Liao (2015) <DOI:10.1515/ijb-2014-0030>) and present results in plots with discordance rate and/or clinically meaningful limit to quantify agreement quality.