Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Create American Psychological Association Style, Seventh Edition documents. Format numbers and text consistent with APA style. Create tables that comply with APA style by extending flextable functions.
Self-Attention algorithm helper functions and demonstration vignettes of increasing depth on how to construct the Self-Attention algorithm, this is based on Vaswani et al. (2017) <doi:10.48550/arXiv.1706.03762>, Dan Jurafsky and James H. Martin (2022, ISBN:978-0131873216) <https://web.stanford.edu/~jurafsky/slp3/> "Speech and Language Processing (3rd ed.)" and Alex Graves (2020) <https://www.youtube.com/watch?v=AIiwuClvH6k> "Attention and Memory in Deep Learning".
Create data that displays generative art when mapped into a ggplot2 plot. Functionality includes specialized data frame creation for geometric shapes, tools that define artistic color palettes, tools for geometrically transforming data, and other miscellaneous tools that are helpful when using ggplot2 for generative art.
Fits Modern Analogue Technique and Weighted Averaging transfer function models for prediction of environmental data from species data, and related methods used in palaeoecology.
Bindings to libarchive <http://www.libarchive.org> the Multi-format archive and compression library. Offers R connections and direct extraction for many archive formats including tar', ZIP', 7-zip', RAR', CAB and compression formats including gzip', bzip2', compress', lzma and xz'.
Programmatic interface to the NASA Application for Extracting and Exploring Analysis Ready Samples services (AppEEARS; <https://appeears.earthdatacloud.nasa.gov/>). The package provides easy access to analysis ready earth observation data in R.
This package performs the two-sample Ansariâ Bradley test (Ansari & Bradley, 1960 <https://www.jstor.org/stable/2237814>) for univariate, distinct data in the presence of missing values, as described in Zeng et al. (2025) <doi:10.48550/arXiv.2509.20332>. This method does not make any assumptions about the missingness mechanisms and controls the Type I error regardless of the missing values by taking all possible missing values into account.
Computes and integrates daily potential evapotranspiration (PET) and a soil water balance model. It allows users to estimate and predict the wet season calendar, including onset, cessation, and duration, based on an agroclimatic approach for a specified period. This functionality helps in managing agricultural water resources more effectively. For detailed methodologies, users can refer to Allen et al. (1998, ISBN:92-5-104219-5); Allen (2005, ISBN:9780784408056); Doorenbos and Pruitt (1975, ISBN:9251002797); Guo et al. (2016) <doi:10.1016/j.envsoft.2015.12.019>; Hargreaves and Samani (1985) <doi:10.13031/2013.26773>; Priestley and Taylor (1972) <https://journals.ametsoc.org/view/journals/apme/18/7/1520-0450_1979_018_0898_tptema_2_0_co_2.xml>.
This package provides sleep duration estimates using a Pruned Dynamic Programming (PDP) algorithm that efficiently identifies change-points. PDP applied to physical activity data can identify transitions from wakefulness to sleep and vice versa. Baek, Jonggyu, Banker, Margaret, Jansen, Erica C., She, Xichen, Peterson, Karen E., Pitchford, E. Andrew, Song, Peter X. K. (2021) An Efficient Segmentation Algorithm to Estimate Sleep Duration from Actigraphy Data <doi:10.1007/s12561-021-09309-3>.
Wraps the Abseil C++ library for use by R packages. Original files are from <https://github.com/abseil/abseil-cpp>. Patches are located at <https://github.com/doccstat/abseil-r/tree/main/local/patches>.
Computes low-dimensional point representations of high-dimensional numerical data according to the data visualization method Adaptable Radial Axes described in: Manuel Rubio-Sánchez, Alberto Sanchez, and Dirk J. Lehmann (2017) "Adaptable radial axes plots for improved multivariate data visualization" <doi:10.1111/cgf.13196>.
This package implements the allan variance and allan variance linear regression estimator for latent time series models. More details about the method can be found, for example, in Guerrier, S., Molinari, R., & Stebler, Y. (2016) <doi:10.1109/LSP.2016.2541867>.
This package provides a comprehensive system for selecting variables and weighting data to match the specifications of the American National Election Studies. The package includes methods for identifying discrepant variables, raking data, and assessing the effects of the raking algorithm. It also allows automated re-raking if target variables fall outside identified bounds and allows greater user specification than other available raking algorithms. A variety of simple weighted statistics that were previously in this package (version .55 and earlier) have been moved to the package weights.'.
The at-Risk (aR) approach is based on a two-step parametric estimation procedure that allows to forecast the full conditional distribution of an economic variable at a given horizon, as a function of a set of factors. These density forecasts are then be used to produce coherent forecasts for any downside risk measure, e.g., value-at-risk, expected shortfall, downside entropy. Initially introduced by Adrian et al. (2019) <doi:10.1257/aer.20161923> to reveal the vulnerability of economic growth to financial conditions, the aR approach is currently extensively used by international financial institutions to provide Value-at-Risk (VaR) type forecasts for GDP growth (Growth-at-Risk) or inflation (Inflation-at-Risk). This package provides methods for estimating these models. Datasets for the US and the Eurozone are available to allow testing of the Adrian et al. (2019) model. This package constitutes a useful toolbox (data and functions) for private practitioners, scholars as well as policymakers.
The archdata package provides several types of data that are typically used in archaeological research. It provides all of the data sets used in "Quantitative Methods in Archaeology Using R" by David L Carlson, one of the Cambridge Manuals in Archaeology.
This package provides a varied array of mathematical derivations from various titrimetric and colorimetric methods for analyzing water quality parameters were condensed and integrated for the better physicochemical analysis. It is indispensable for managing any aquatic ecosystem, including aquaculture facilities. By substituting titrant and spectrophotometric absorbance readings, accurate determination of the concentrations of critical parameters such as Dissolved Oxygen, Free Carbon Dioxide, Total Alkalinity, Water Hardness, Hydrogen Sulfide, Total Ammonia Nitrogen, Nitrite, Nitrate, Chlorinity, Salinity, Inorganic Phosphate, and Transparency can be facilitated APHA(2017,ISBN:9780875532875).
The meaning of adea is "alternate DEA". This package is devoted to provide the alternative method of DEA described in the paper entitled "Stepwise Selection of Variables in DEA Using Contribution Load", by F. Fernandez-Palacin, M. A. Lopez-Sanchez and M. Munoz-Marquez. Pesquisa Operacional 38 (1), pg. 1-24, 2018. <doi:10.1590/0101-7438.2018.038.01.0031>. A full functional on-line and interactive version is available at <https://knuth.uca.es/shiny/DEA/>.
Computes various stability parameters from Additive Main Effects and Multiplicative Interaction (AMMI) analysis results such as Modified AMMI Stability Value (MASV), Sums of the Absolute Value of the Interaction Principal Component Scores (SIPC), Sum Across Environments of Genotype-Environment Interaction Modelled by AMMI (AMGE), Sum Across Environments of Absolute Value of Genotype-Environment Interaction Modelled by AMMI (AV_(AMGE)), AMMI Stability Index (ASI), Modified ASI (MASI), AMMI Based Stability Parameter (ASTAB), Annicchiarico's D Parameter (DA), Zhang's D Parameter (DZ), Averages of the Squared Eigenvector Values (EV), Stability Measure Based on Fitted AMMI Model (FA), Absolute Value of the Relative Contribution of IPCs to the Interaction (Za). Further calculates the Simultaneous Selection Index for Yield and Stability from the computed stability parameters. See the vignette for complete list of citations for the methods implemented.
This package provides a collection of measures for measuring ecological diversity. Ecological diversity comes in two flavors: alpha diversity measures the diversity within a single site or sample, and beta diversity measures the diversity across two sites or samples. This package overlaps considerably with other R packages such as vegan', gUniFrac', betapart', and fossil'. We also include a wide range of functions that are implemented in software outside the R ecosystem, such as scipy', Mothur', and scikit-bio'. The implementations here are designed to be basic and clear to the reader.
Considering an (n x m) data matrix X, this package is based on the method proposed by Gower, Groener, and Velden (2010) <doi:10.1198/jcgs.2010.07134>, and utilize the resulting matrices from the extended version of the NIPALS decomposition to determine n triangles whose areas are used to visually estimate the elements of a specific column of X. After a 90-degree rotation of the sample points, the triangles are drawn regarding the following points: 1.the origin of the axes; 2.the sample points; 3. the vector endpoint representing some variable.
Alternating Manifold Proximal Gradient Method for Sparse PCA uses the Alternating Manifold Proximal Gradient (AManPG) method to find sparse principal components from a data or covariance matrix. Provides a novel algorithm for solving the sparse principal component analysis problem which provides advantages over existing methods in terms of efficiency and convergence guarantees. Chen, S., Ma, S., Xue, L., & Zou, H. (2020) <doi:10.1287/ijoo.2019.0032>. Zou, H., Hastie, T., & Tibshirani, R. (2006) <doi:10.1198/106186006X113430>. Zou, H., & Xue, L. (2018) <doi:10.1109/JPROC.2018.2846588>.
Trigger animation effects on scroll on any HTML element of shiny and rmarkdown', such as any text or plot, thanks to the AOS Animate On Scroll jQuery library.
High performance variant of apply() for a fixed set of functions. Considerable speedup of this implementation is a trade-off for universality: user defined functions cannot be used with this package. However, about 20 most currently employed functions are available for usage. They can be divided in three types: reducing functions (like mean(), sum() etc., giving a scalar when applied to a vector), mapping function (like normalise(), cumsum() etc., giving a vector of the same length as the input vector) and finally, vector reducing function (like diff() which produces result vector of a length different from the length of input vector). Optional or mandatory additional arguments required by some functions (e.g. norm type for norm()) can be passed as named arguments in ...'.
This package provides methods to analyse spatial units in archaeology from the relationships between refitting fragmented objects scattered in these units (e.g. stratigraphic layers). Graphs are used to model archaeological observations. The package is mainly based on the igraph package for graph analysis. Functions can: 1) create, manipulate, visualise, and simulate fragmentation graphs, 2) measure the cohesion and admixture of archaeological spatial units, and 3) characterise the topology of a specific set of refitting relationships. A series of published empirical datasets is included. Documentation about archeofrag is provided by a vignette and by the accompanying scientific papers: Plutniak (2021, Journal of Archaeological Science, <doi:10.1016/j.jas.2021.105501>) and Plutniak (2022, Journal of Open Source Software, <doi:10.21105/joss.04335>). This package is complemented by the archeofrag.gui R package, a companion GUI application available at <https://analytics.huma-num.fr/Sebastien.Plutniak/archeofrag/>.