To assist you with troubleshooting internet connection issues and assist in isolating packet loss on your network. It does this by allowing you to retrieve the top trace route destinations your internet provider uses, and recursively ping each server in series while capturing the results and writing them to a log file. Each iteration it queries the destinations again, before shuffling the sequence of destinations to ensure the analysis is unbiased and consistent across each trace route.
RCON(V, E) models are a kind of restriction of the Gaussian Graphical Models defined by a set of equality constraints on the entries of the concentration matrix. sglasso package implements the structured graphical lasso (sglasso) estimator proposed in Abbruzzo et al. (2014) for the weighted l1-penalized RCON(V, E) model. Two cyclic coordinate algorithms are implemented to compute the sglasso estimator, i.e. a cyclic coordinate minimization (CCM) and a cyclic coordinate descent (CCD) algorithm.
Offers a suite of functions for converting to and from (atomic) vectors, matrices, data.frames, and (3D+) arrays as well as lists of these objects. It is an alternative to the base R as.<str>.<method>()
functions (e.g., as.data.frame.array()
) that provides more useful and/or flexible restructuring of R objects. To do so, it only works with common structuring of R objects (e.g., data.frames with only atomic vector columns).
This package provides the density, distribution, quantile and generation functions of some obscure probability distributions, including the doubly non-central t, F, Beta, and Eta distributions; the lambda-prime and K-prime; the upsilon distribution; the (weighted) sum of non-central chi-squares to a power; the (weighted) sum of log non-central chi-squares; the product of non-central chi-squares to powers; the product of doubly non-central F variables; the product of independent normals.
An implementation of the Thornley transport resistance plant growth model. The package can be used to simulate plant growth as forced by climate system variables. The package provides methods for formatting forcing variables, simulating growth dynamics and calibrating model parameters. For more information see Higgins et al. (2025) TTR.PGM: An R package for modelling the distributions and dynamics of plants using the Thornley transport resistance plant growth model. Methods in Ecology and Evolution. in press.
Manager of tick-by-tick transaction data that performs cleaning', aggregation and import in an efficient and fast way. The package engine, written in C++, exploits the zlib and gzstream libraries to handle gzipped data without need to uncompress them. Cleaning and aggregation are performed according to Brownlees and Gallo (2006) <DOI:10.1016/j.csda.2006.09.030>. Currently, TAQMNGR processes raw data from WRDS (Wharton Research Data Service, <https://wrds-web.wharton.upenn.edu/wrds/>).
Valid Improved Sparsity A-Learning (VISA) provides a new method for selecting important variables involved in optimal treatment regime from a multiply robust perspective. The VISA estimator achieves its success by borrowing the strengths of both model averaging (ARM, Yuhong Yang, 2001) <doi:10.1198/016214501753168262> and variable selection (PAL, Chengchun Shi, Ailin Fan, Rui Song and Wenbin Lu, 2018) <doi:10.1214/17-AOS1570>. The package is an implementation of Zishu Zhan and Jingxiao Zhang. (2022+).
Offers a wide range of functions for reading and writing data in various file formats, including CSV, RDS, Excel and ZIP files. Additionally, it provides functions for retrieving metadata associated with files, such as file size and creation date, making it easy to manage and organize large data sets. This package is designed to simplify data import and export tasks, and provide users with a comprehensive set of tools to work with different types of data files.
HuBMAP
provides an open, global bio-molecular atlas of the human body at the cellular level. The `datasets()
`, `samples()
`, `donors()
`, `publications()
`, and `collections()
` functions retrieves the information for each of these entity types. `*_details()
` are available for individual entries of each entity type. `*_derived()
` are available for retrieving derived datasets or samples for individual entries of each entity type. Data files can be accessed using `bulk_data_transfer()
`.
This package provides a Davidian curve defines a seminonparametric density, whose shape and flexibility can be tuned by easy to estimate parameters. Since a special case of a Davidian curve is the standard normal density, Davidian curves can be used for relaxing normality assumption in statistical applications (Zhang & Davidian, 2001) <doi:10.1111/j.0006-341X.2001.00795.x>. This package provides the density function, the gradient of the loglikelihood and a random generator for Davidian curves.
This package contains an implementation of a confounding robust independent component analysis (ICA) for noisy and grouped data. The main function coroICA()
performs a blind source separation, by maximizing an independence across sources and allows to adjust for varying confounding based on user-specified groups. Additionally, the package contains the function uwedge()
which can be used to approximately jointly diagonalize a list of matrices. For more details see the project website <https://sweichwald.de/coroICA/>
.
Obtain coordinate system metadata from various data formats. There are functions to extract a CRS (coordinate reference system, <https://en.wikipedia.org/wiki/Spatial_reference_system>) in EPSG (European Petroleum Survey Group, <http://www.epsg.org/>), PROJ4 <https://proj.org/>, or WKT2 (Well-Known Text 2, <http://docs.opengeospatial.org/is/12-063r5/12-063r5.html>) forms. This is purely for getting simple metadata from in-memory formats, please use other tools for out of memory data sources.
Estimates RxC
(R by C) vote transfer matrices (ecological contingency tables) from aggregate data building on Thomsen (1987) and Park (2008) approaches. References: Park, W.-H. (2008). Ecological Inference and Aggregate Analysis of Election''. PhD
Dissertation. University of Michigan. <https://deepblue.lib.umich.edu/bitstream/handle/2027.42/58525/wpark_1.pdf> Thomsen, S.R. (1987, ISBN:87-7335-037-2). Danish Elections 1920 79: a Logit Approach to Ecological Analysis and Inference''. Politica, Aarhus, Denmark.
Comprehensive toolkit for addressing selection bias in binary disease models across diverse non-probability samples, each with unique selection mechanisms. It utilizes Inverse Probability Weighting (IPW) and Augmented Inverse Probability Weighting (AIPW) methods to reduce selection bias effectively in multiple non-probability cohorts by integrating data from either individual-level or summary-level external sources. The package also provides a variety of variance estimation techniques. Please refer to Kundu et al. <doi:10.48550/arXiv.2412.00228>
.
This package provides a general estimation framework for multi-state Markov processes with flexible specification of the transition intensities. The log-transition intensities can be specified through Generalised Additive Models which allow for virtually any type of covariate effect. Elementary specifications such as time-homogeneous processes and simple parametric forms are also supported. There are no limitations on the type of process one can assume, with both forward and backward transitions allowed and virtually any number of states.
An R package that allows for combining tree-boosting with Gaussian process and mixed effects models. It also allows for independently doing tree-boosting as well as inference and prediction for Gaussian process and mixed effects models. See <https://github.com/fabsig/GPBoost> for more information on the software and Sigrist (2022, JMLR) <https://www.jmlr.org/papers/v23/20-322.html> and Sigrist (2023, TPAMI) <doi:10.1109/TPAMI.2022.3168152> for more information on the methodology.
This package provides convenient access to the official spatial datasets of Peru as sf objects in R. This package includes a wide range of geospatial data covering various aspects of Peruvian geography, such as: administrative divisions (Source: INEI <https://ide.inei.gob.pe/>), protected natural areas (Source: GEO ANP - SERNANP <https://geo.sernanp.gob.pe/visorsernanp/>). All datasets are harmonized in terms of attributes, projection, and topology, ensuring consistency and ease of use for spatial analysis and visualization.
This package provides tools for processing and analyzing .har and .sl4 files, making it easier for GEMPACK users and GTAP researchers to handle large economic datasets. It simplifies the management of multiple experiment results, enabling faster and more efficient comparisons without complexity. Users can extract, restructure, and merge data seamlessly, ensuring compatibility across different tools. The processed data can be exported and used in R', Stata', Python', Julia', or any software that supports Text, CSV, or Excel formats.
This package provides a framework for clustering longitudinal datasets in a standardized way. The package provides an interface to existing R packages for clustering longitudinal univariate trajectories, facilitating reproducible and transparent analyses. Additionally, standard tools are provided to support cluster analyses, including repeated estimation, model validation, and model assessment. The interface enables users to compare results between methods, and to implement and evaluate new methods with ease. The akmedoids package is available from <https://github.com/MAnalytics/akmedoids>.
Assessment and diagnostics for comparing competing clustering solutions, using predictive models. The main intended use is for comparing clustering/classification solutions of ecological data (e.g. presence/absence, counts, ordinal scores) to 1) find an optimal partitioning solution, 2) identify characteristic species and 3) refine a classification by merging clusters that increase predictive performance. However, in a more general sense, this package can do the above for any set of clustering solutions for i observations of j variables.
This package provides a collection of tools to access prepared air quality monitoring data files from web servers with ease and speed. Air quality data are sourced from open and publicly accessible repositories and can be found in these locations: <https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-8> and <https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm>
. The web server space has been provided by Ricardo Energy & Environment.
Implementation of all possible forms of 2x2 and 3x3 space-filling curves, i.e., the generalized forms of the Hilbert curve <https://en.wikipedia.org/wiki/Hilbert_curve>, the Peano curve <https://en.wikipedia.org/wiki/Peano_curve> and the Peano curve in the meander type (Figure 5 in <https://eudml.org/doc/141086>). It can generates nxn curves expanded from any specific level-1 units. It also implements the H-curve and the three-dimensional Hilbert curve.
Generates binary test data based on Item Response Theory using the two-parameter logistic model (Lord, 1980 <doi:10.4324/9780203056615>). Useful functions for test equating are included, e.g. functions for generating internal and external common items between test forms and a function to create a linkage plans between those forms. Ancillary functions for generating true item and person parameters as well as for calculating the probability of a person correctly answering an item are also included.
Spatial model calculation for static and dynamic panel data models, weights matrix creation and Bayesian model comparison. Bayesian model comparison methods were described by LeSage
(2014) <doi:10.1016/j.spasta.2014.02.002>. The Lee'-'Yu transformation approach is described in Yu', De Jong and Lee (2008) <doi:10.1016/j.jeconom.2008.08.002>, Lee and Yu (2010) <doi:10.1016/j.jeconom.2009.08.001> and Lee and Yu (2010) <doi:10.1017/S0266466609100099>.