This package provides tools to convert from specific formats to more general forms of spatial data. Using tables to store the actual entities present in spatial data provides flexibility, and the functions here deliberately minimize the level of interpretation applied, leaving that for specific applications. Includes support for simple features, round-trip for Spatial classes and long-form tables, analogous to ggplot2::fortify'. There is also a more normal form representation that decomposes simple features and their kin to tables of objects, parts, and unique coordinates.
Determine sample sizes, draw samples, and conduct data analysis using data frames. It specifically enables you to determine simple random sample sizes, stratified sample sizes, and complex stratified sample sizes using a secondary variable such as population; draw simple random samples and stratified random samples from sampling data frames; determine which observations are missing from a random sample, missing by strata, duplicated within a dataset; and perform data analysis, including proportions, margins of error and upper and lower bounds for simple, stratified and cluster sample designs.
Identifying cell types based on expression profiles is a pillar of single cell analysis. scROSHI
identifies cell types based on expression profiles of single cell analysis by utilizing previously obtained cell type specific gene sets. It takes into account the hierarchical nature of cell type relationship and does not require training or annotated data. A detailed description of the method can be found at: Prummer, Bertolini, Bosshard, Barkmann, Yates, Boeva, The Tumor Profiler Consortium, Stekhoven, and Singer (2022) <doi:10.1101/2022.04.05.487176>.
Density, distribution function, quantile function, and random generation function, maximum likelihood estimation (MLE), penalized maximum likelihood estimation (PMLE), the quartiles method estimation (QM), and median rank estimation (MEDRANK) for the two-parameter exponential distribution. MLE and PMLE are based on Mengjie Zheng (2013)<https://scse.d.umn.edu/sites/scse.d.umn.edu/files/mengjie-thesis_masters-1.pdf>. QM is based on Entisar Elgmati and Nadia Gregni (2016)<doi:10.5539/ijsp.v5n5p12>. MEDRANK is based on Matthew Reid (2022)<doi:10.5281/ZENODO.3938000>.
Computes the t* statistic corresponding to the tau* population coefficient introduced by Bergsma and Dassios (2014) <DOI:10.3150/13-BEJ514> and does so in O(n^2) time following the algorithm of Heller and Heller (2016) <DOI:10.48550/arXiv.1605.08732>
building off of the work of Weihs, Drton, and Leung (2016) <DOI:10.1007/s00180-015-0639-x>. Also allows for independence testing using the asymptotic distribution of t* as described by Nandy, Weihs, and Drton (2016) <DOI:10.1214/16-EJS1166>.
This package provides functions for the selection of thresholds for use in extreme value models, based mainly on the methodology in Northrop, Attalides and Jonathan (2017) <doi:10.1111/rssc.12159>. It also performs predictive inferences about future extreme values, based either on a single threshold or on a weighted average of inferences from multiple thresholds, using the revdbayes package <https://cran.r-project.org/package=revdbayes>. At the moment only the case where the data can be treated as independent identically distributed observations is considered.
Semiparametric distributional regression methods (expectile, quantile and mode regression) for time-to-event variables with right-censoring; uses inverse probability of censoring weights or accelerated failure time models with auxiliary likelihoods. Expectile regression using inverse probability of censoring weights has been introduced in Seipp et al. (2021) ``Weighted Expectile Regression for Right-Censored Data <doi:10.1002/sim.9137>, mode regression for time-to-event variables has been introduced in Seipp et al. (2022) ``Flexible Semiparametric Mode Regression for Time-to-Event Data <doi:10.1177/09622802221122406>.
This package provides a suite of functions for analyzing and visualizing the health economic outputs of mathematical models. This package was developed with funding from the National Institutes of Allergy and Infectious Diseases of the National Institutes of Health under award no. R01AI138783. The content of this package is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The theoretical underpinnings of dampack''s functionality are detailed in Hunink et al. (2014) <doi:10.1017/CBO9781139506779>.
Interval estimation of the population allele frequency from qPCR
analysis based on the restriction enzyme digestion (RED)-DeltaDeltaCq
method (Osakabe et al. 2017, <doi:10.1016/j.pestbp.2017.04.003>), as well as general DeltaDeltaCq
analysis. Compatible with the Cq measurement of DNA extracted from multiple individuals at once, so called "group-testing", this model assumes that the quantity of DNA extracted from an individual organism follows a gamma distribution. Therefore, the point estimate is robust regarding the uncertainty of the DNA yield.
Filling in the missing entries of a partially observed data is one of fundamental problems in various disciplines of mathematical science. For many cases, data at our interests have canonical form of matrix in that the problem is posed upon a matrix with missing values to fill in the entries under preset assumptions and models. We provide a collection of methods from multiple disciplines under Matrix Completion, Imputation, and Inpainting. See Davenport and Romberg (2016) <doi:10.1109/JSTSP.2016.2539100> for an overview of the topic.
This package provides tools are provided to expand vectors of short URLs into long URLs'. No API services are used, which may mean that this operates more slowly than API services do (since they usually cache results of expansions that every user of the service requests). You can setup your own caching layer with the memoise package if you wish to have a speedup during single sessions or add larger dependencies, such as Redis', to gain a longer-term performance boost at the expense of added complexity.
This package provides functions to easily return simulated predicted probabilities and first differences for multinomial logit models. It takes a specified scenario and a multinomial model to predict probabilities with a set of coefficients, drawn from a simulated sampling distribution. The simulated predictions allow for meaningful plots with means and confidence intervals. The methodological approach is based on the principles laid out by King, Tomz, and Wittenberg (2000) <doi:10.2307/2669316> and Hanmer and Ozan Kalkan (2016) <doi:10.1111/j.1540-5907.2012.00602.x>.
Designed to automate the calculation of Emergency Medical Service (EMS) quality metrics, nemsqar implements measures defined by the National EMS Quality Alliance (NEMSQA). By providing reliable, evidence-based quality assessments, the package supports EMS agencies, healthcare providers, and researchers in evaluating and improving patient outcomes. Users can find details on all approved NEMSQA measures at <https://www.nemsqa.org/measures>. Full technical specifications, including documentation and pseudocode used to develop nemsqar', are available on the NEMSQA website after creating a user profile at <https://www.nemsqa.org>.
This package provides a systematic bioinformatics tool to perform single-sample mutation-based pathway analysis by integrating somatic mutation data with the Protein-Protein Interaction (PPI) network. In this method, we use local and global weighted strategies to evaluate the effects of network genes from mutations according to the network topology and then calculate the mutation-based pathway enrichment score (ssMutPES
) to reflect the accumulated effect of mutations of each pathway. Subsequently, the ssMutPES
profiles are used for unsupervised spectral clustering to identify cancer subtypes.
Fit Thurstonian forced-choice models (CFA (simple and factor) and IRT) in R. This package allows for the analysis of item response modeling (IRT) as well as confirmatory factor analysis (CFA) in the Thurstonian framework. Currently, estimation can be performed by Mplus and lavaan'. References: Brown & Maydeu-Olivares (2011) <doi:10.1177/0013164410375112>; Jansen, M. T., & Schulze, R. (in review). The Thurstonian linked block design: Improving Thurstonian modeling for paired comparison and ranking data.; Maydeu-Olivares & Böckenholt (2005) <doi:10.1037/1082-989X.10.3.285>.
This package provides an R interface for volesti C++ package. volesti computes estimations of volume of polytopes given by (i) a set of points, (ii) linear inequalities or (iii) Minkowski sum of segments (a.k.a. zonotopes). There are three algorithms for volume estimation as well as algorithms for sampling, rounding and rotating polytopes. Moreover, volesti provides algorithms for estimating copulas useful in computational finance. Methods implemented in volesti are described in A. Chalkis and V. Fisikopoulos (2022) <doi:10.32614/RJ-2021-077> and references therein.
This package provides pre-processed RNA-seq data where the epithelial to mesenchymal transition was induced on cell lines. These data come from three publications Cursons et al. (2015), Cursons etl al. (2018) and Foroutan et al. (2017). In each of these publications, EMT was induces across multiple cell lines following treatment by TGFb among other stimulants. This data will be useful in determining the regulatory programs modified in order to achieve an EMT. Data were processed by the Davis laboratory in the Bioinformatics division at WEHI.
magrene allows the identification and analysis of graph motifs in (duplicated) gene regulatory networks (GRNs), including lambda, V, PPI V, delta, and bifan motifs. GRNs can be tested for motif enrichment by comparing motif frequencies to a null distribution generated from degree-preserving simulated GRNs. Motif frequencies can be analyzed in the context of gene duplications to explore the impact of small-scale and whole-genome duplications on gene regulatory networks. Finally, users can calculate interaction similarity for gene pairs based on the Sorensen-Dice similarity index.
This package provides a collection of tools for cancer genomic data clustering analyses, including those for single cell RNA-seq. Cell clustering and feature gene selection analysis employ Bayesian (and maximum likelihood) non-negative matrix factorization (NMF) algorithm. Input data set consists of RNA count matrix, gene, and cell bar code annotations. Analysis outputs are factor matrices for multiple ranks and marginal likelihood values for each rank. The package includes utilities for downstream analyses, including meta-gene identification, visualization, and construction of rank-based trees for clusters.
This package provides a scripting and command-line front-end is provided by r (aka littler) as a lightweight binary wrapper around the GNU R language and environment for statistical computing and graphics. While R can be used in batch mode, the r binary adds full support for both shebang-style scripting (i.e. using a hash-mark-exclamation-path expression as the first line in scripts) as well as command-line use in standard pipelines. In other words, r provides the R language without the environment.
The rust libc crate provides all of the definitions necessary to easily interoperate with C code (or "C-like" code) on each of the platforms that Rust supports. This includes type definitions (e.g., c_int), constants (e.g., EINVAL) as well as function headers (e.g., malloc).
This crate exports all underlying platform types, functions, and constants under the crate root, so all items are accessible as libc::foo. The types and values of all the exported APIs match the platform that libc is compiled for.
It fits finite mixture models for censored or/and missing data using several multivariate distributions. Point estimation and asymptotic inference (via empirical information matrix) are offered as well as censored data generation. Pairwise scatter and contour plots can be generated. Possible multivariate distributions are the well-known normal, Student-t and skew-normal distributions. This package is an complement of Lachos, V. H., Moreno, E. J. L., Chen, K. & Cabral, C. R. B. (2017) <doi:10.1016/j.jmva.2017.05.005> for the multivariate skew-normal case.
Implementing seven Covariate-Adaptive Randomization to assign patients to two treatments. Three of these procedures can also accommodate quantitative and mixed covariates. Given a set of covariates, the user can generate a single sequence of allocations or replicate the design multiple times by simulating the patients covariate profiles. At the end, an extensive assessment of the performance of the randomization procedures is provided, calculating several imbalance measures. See Baldi Antognini A, Frieri R, Zagoraiou M and Novelli M (2022) <doi:10.1007/s00362-022-01381-1> for details.
This package provides functions providing an easy and intuitive way for fitting and clusters data using the Mixture of Unigrams models by means the Expectation-Maximization algorithm (Nigam, K. et al. (2000). <doi:10.1023/A:1007692713085>), Mixture of Dirichlet-Multinomials estimated by Gradient Descent (Anderlucci, Viroli (2020) <doi:10.1007/s11634-020-00399-3>) and Deep Mixture of Multinomials whose estimates are obtained with Gibbs sampling scheme (Viroli, Anderlucci (2020) <doi:10.1007/s11222-020-09989-9>). There are also functions for graphical representation of clusters obtained.