Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimate group aggregates, where one can set user-defined conditions that each group of records must satisfy to be suitable for aggregation. If a group of records is not suitable, it is expanded using a collapsing scheme defined by the user. A paper on this package was published in the Journal of Statistical Software <doi:10.18637/jss.v112.i04>.
Create, upload and run Acumos R models. Acumos (<https://www.acumos.org>) is a platform and open source framework intended to make it easy to build, share, and deploy AI apps. Acumos is part of the LF AI Foundation', an umbrella organization within The Linux Foundation'. With this package, user can create a component, and push it to an Acumos platform.
Visualization of Design of Experiments from the agricolae package with ggplot2 framework The user provides an experiment design from the agricolae package, calls the corresponding function and will receive a visualization with ggplot2 based functions that are specific for each design. As there are many different designs, each design is tested on its type. The output can be modified with standard ggplot2 commands or with other packages with ggplot2 function extensions.
This package implements Bayesian estimation and inference for alpha-mixture survival models, including Weibull and Exponential based components, with tools for simulation and posterior summaries. The methods target applications in reliability and biomedical survival analysis. The package implements Bayesian estimation for the alpha-mixture methodology introduced in Asadi et al. (2019) <doi:10.1017/jpr.2019.72>.
Augmented Regression with General Online data (ARGO) for accurate estimation of influenza epidemics in United States on national level, regional level and state level. It replicates the method introduced in paper Yang, S., Santillana, M. and Kou, S.C. (2015) <doi:10.1073/pnas.1515373112>; Ning, S., Yang, S. and Kou, S.C. (2019) <doi:10.1038/s41598-019-41559-6>; Yang, S., Ning, S. and Kou, S.C. (2021) <doi:10.1038/s41598-021-83084-5>.
This package provides a testing framework for testing the multivariate point null hypothesis. A testing framework described in Elder et al. (2022) <arXiv:2203.01897> to test the multivariate point null hypothesis. After the user selects a parameter of interest and defines the assumed data generating mechanism, this information should be encoded in functions for the parameter estimator and its corresponding influence curve. Some parameter and data generating mechanism combinations have codings in this package, and are explained in detail in the article.
Weather indices are formed from weather variables in this package. The users can input any number of weather variables recorded over any number of weeks. This package has no restriction on the number of weeks and weather variables to be taken as input.The details of the method can be seen (i)'Joint effects of weather variables on rice yields by R. Agrawal, R. C. Jain and M. P. Jha in Mausam, vol. 34, pp. 189-194, 1983,<doi:10.54302/mausam.v34i2.2392>,(ii)'Improved weather indices based Bayesian regression model for forecasting crop yield by M. Yeasin, K. N. Singh, A. Lama and B. Gurung in Mausam, vol. 72, pp.879-886, 2021,<doi:10.54302/mausam.v72i4.670>.
Automatically generate a changelog file (NEWS.md / CHANGELOG.md) from the git history using conventional commit messages (<https://www.conventionalcommits.org/en/v1.0.0/>).
Data from the anxiety and confinement study from Alvarado-Aravena et al. (2022) <doi:10.3390/bs12100398>.
This package provides a collection of model checking methods for semiparametric accelerated failure time (AFT) models under the rank-based approach. For the (computational) efficiency, Gehan's weight is used. It provides functions to verify whether the observed data fit the specific model assumptions such as a functional form of each covariate, a link function, and an omnibus test. The p-value offered in this package is based on the Kolmogorov-type supremum test and the variance of the proposed test statistics is estimated through the re-sampling method. Furthermore, a graphical technique to compare the shape of the observed residual to a number of the approximated realizations is provided. See the following references; A general model-checking procedure for semiparametric accelerated failure time models, Statistics and Computing, 34 (3), 117 <doi:10.1007/s11222-024-10431-7>; Diagnostics for semiparametric accelerated failure time models with R package afttest', arXiv, <doi:10.48550/arXiv.2511.09823>.
The anomalize package enables a "tidy" workflow for detecting anomalies in data. The main functions are time_decompose(), anomalize(), and time_recompose(). When combined, it's quite simple to decompose time series, detect anomalies, and create bands separating the "normal" data from the anomalous data at scale (i.e. for multiple time series). Time series decomposition is used to remove trend and seasonal components via the time_decompose() function and methods include seasonal decomposition of time series by Loess ("stl") and seasonal decomposition by piecewise medians ("twitter"). The anomalize() function implements two methods for anomaly detection of residuals including using an inner quartile range ("iqr") and generalized extreme studentized deviation ("gesd"). These methods are based on those used in the forecast package and the Twitter AnomalyDetection package. Refer to the associated functions for specific references for these methods.
This package contains various functions for optimal scaling. One function performs optimal scaling by maximizing an aspect (i.e. a target function such as the sum of eigenvalues, sum of squared correlations, squared multiple correlations, etc.) of the corresponding correlation matrix. Another function performs implements the LINEALS approach for optimal scaling by minimization of an aspect based on pairwise correlations and correlation ratios. The resulting correlation matrix and category scores can be used for further multivariate methods such as structural equation models.
Formatter functions in the apa package take the return value of a statistical test function, e.g. a call to chisq.test() and return a string formatted according to the guidelines of the APA (American Psychological Association).
This package provides functions to calculate the assortment of vertices in social networks. This can be measured on both weighted and binary networks, with discrete or continuous vertex values.
Computationally efficient method to estimate orthant probabilities of high-dimensional Gaussian vectors. Further implements a function to compute conservative estimates of excursion sets under Gaussian random field priors.
This package provides functions for Arps decline-curve analysis on oil and gas data. Includes exponential, hyperbolic, harmonic, and hyperbolic-to-exponential models as well as the preceding with initial curtailment or a period of linear rate buildup. Functions included for computing rate, cumulative production, instantaneous decline, EUR, time to economic limit, and performing least-squares best fits.
Sample of hydro-meteorological datasets extracted from the CAMELS-FR French database <doi:10.57745/WH7FJR>. It provides metadata and catchment-scale aggregated hydro-meteorological time series on a pool of French catchments for use by the airGR packages.
This package provides functions required to classify subjects within camera trap field data. The package can handle both images and videos. The authors recommend a two-step approach using Microsoft's MegaDector model and then a second model trained on the classes of interest.
This package provides tools to read/write/publish metadata based on the Atom XML syndication format. This includes support of Dublin Core XML implementation, and a client to API(s) implementing the AtomPub - SWORD API specification.
Create aliases for other R names or arbitrarily complex R expressions. Accessing the alias acts as-if the aliased expression were invoked instead, and continuously reflects the current value of that expression: updates to the original expression will be reflected in the alias; and updates to the alias will automatically be reflected in the original expression.
Interactive R tutorials written using learnr for Field (2016), "An Adventure in Statistics", <ISBN:9781446210451>. Topics include general workflow in R and Rstudio', the R environment and tidyverse', summarizing data, model fitting, central tendency, visualising data using ggplot2', inferential statistics and robust estimation, hypothesis testing, the general linear model, comparing means, repeated measures designs, factorial designs, multilevel models, growth models, and generalized linear models (logistic regression).
Adaptive Gauss Hermite Quadrature for Bayesian inference. The AGHQ method for normalizing posterior distributions and making Bayesian inferences based on them. Functions are provided for doing quadrature and marginal Laplace approximations, and summary methods are provided for making inferences based on the results. See Stringer (2021). "Implementing Adaptive Quadrature for Bayesian Inference: the aghq Package" <arXiv:2101.04468>.
This package provides a method for quantifying resilience after a stress event. A set of functions calculate the area of resilience that is created by the departure of baseline y (i.e., robustness) and the time taken x to return to baseline (i.e., rapidity) after a stress event using the Cartesian coordinates of the data. This package has the capability to calculate areas of resilience, growth, and cases in which resilience is not achieved (e.g., diminished performance without return to baseline).
Continuous and discrete (count or categorical) estimation of density, probability mass function (p.m.f.) and regression functions are performed using associated kernels. The cross-validation technique and the local Bayesian procedure are also implemented for bandwidth selection.