This package provides functions for normalizing standard laboratory measurements (e.g. hemoglobin, cholesterol levels) according to age and sex, based on the algorithms described in "Personalized lab test models to quantify disease potentials in healthy individuals" (Netta Mendelson Cohen, Omer Schwartzman, Ram Jaschek, Aviezer Lifshitz, Michael Hoichman, Ran Balicer, Liran I. Shlush, Gabi Barbash & Amos Tanay, <doi:10.1038/s41591-021-01468-6>). Allows users to easily obtain normalized values for standard lab results, and to visualize their distributions. See more at <https://tanaylab.weizmann.ac.il/labs/>.
Multivariate hypothesis tests and the confidence intervals. It can be used to test the hypothesizes about mean vector or vectors (one-sample, two independent samples, paired samples), covariance matrix (one or more matrices), and the correlation matrix. Moreover, it can be used for robust Hotelling T^2 test at one sample case in high dimensional data. For this package, we have benefited from the studies Rencher (2003), Nel and Merwe (1986) <DOI: 10.1080/03610928608829342>, Tatlidil (1996), Tsagris (2014), Villasenor Alva and Estrada (2009) <DOI: 10.1080/03610920802474465>.
Traditional methods typically detect breakpoints from individual signals, which means that when applied separately to multiple signals, the breakpoints are not aligned. However, this package implements a common breakpoint detection approach for multiple piecewise constant signals, resulting in increased detection sensitivity and specificity. By employing various techniques, optimal performance is ensured, and computation is accelerated. We hope that this package will be beneficial for researchers in signal processing, bioinformatics, economy, and other related fields. The segmentation()
, lambda_estimator()
functions are the main functions of this package.
Finding hidden clusters in structured data can be hindered by the presence of masking variables. If not detected, masking variables are used to calculate the overall similarities between units, and therefore the cluster attribution is more imprecise. The algorithm q-vars implements an optimization method to find the variables that most separate units between clusters. In this way, masking variables can be discarded from the data frame and the clustering is more accurate. Tests can be found in Benati et al.(2017) <doi:10.1080/01605682.2017.1398206>.
Calculates the number of four-taxon subtrees consistent with a pair of cladograms, calculating the symmetric quartet distance of Bandelt & Dress (1986), Reconstructing the shape of a tree from observed dissimilarity data, Advances in Applied Mathematics, 7, 309-343 <doi:10.1016/0196-8858(86)90038-2>, and using the tqDist
algorithm of Sand et al. (2014), tqDist
: a library for computing the quartet and triplet distances between binary or general trees, Bioinformatics, 30, 2079â 2080 <doi:10.1093/bioinformatics/btu157> for pairs of binary trees.
Using principal component analysis as a base model, SCOUTer offers a new approach to simulate outliers in a simple and precise way. The user can generate new observations defining them by a pair of well-known statistics: the Squared Prediction Error (SPE) and the Hotelling's T^2 (T^2) statistics. Just by introducing the target values of the SPE and T^2, SCOUTer returns a new set of observations with the desired target properties. Authors: Alba González, Abel Folch-Fortuny, Francisco Arteaga and Alberto Ferrer (2020).
Providing convenience functions to connect R with the Spotify application programming interface ('API'). At first it aims to help setting up the OAuth2.0 Authentication flow. The default output of the get_*()
functions is tidy, but optionally the functions could return the raw response from the API as well. The search_*()
and get_*()
functions can be combined. See the vignette for more information and examples and the official Spotify for Developers website <https://developer.spotify.com/documentation/web-api/> for information about the Web API'.
This package provides the SMOTE with Boosting (SMOTEWB) algorithm. See F. SaÄ lam, M. A. Cengiz (2022) <doi:10.1016/j.eswa.2022.117023>. It is a SMOTE-based resampling technique which creates synthetic data on the links between nearest neighbors. SMOTEWB uses boosting weights to determine where to generate new samples and automatically decides the number of neighbors for each sample. It is robust to noise and outperforms most of the alternatives according to Matthew Correlation Coefficient metric. Alternative resampling methods are also available in the package.
DEGraph implements recent hypothesis testing methods which directly assess whether a particular gene network is differentially expressed between two conditions. This is to be contrasted with the more classical two-step approaches which first test individual genes, then test gene sets for enrichment in differentially expressed genes. These recent methods take into account the topology of the network to yield more powerful detection procedures. DEGraph provides methods to easily test all KEGG pathways for differential expression on any gene expression data set and tools to visualize the results.
SpatialFeatureExperiment
(SFE) is a new S4 class for working with spatial single-cell genomics data. The voyager package implements basic exploratory spatial data analysis (ESDA) methods for SFE. Univariate methods include univariate global spatial ESDA methods such as Moran's I, permutation testing for Moran's I, and correlograms. Bivariate methods include Lee's L and cross variogram. Multivariate methods include MULTISPATI PCA and multivariate local Geary's C recently developed by Anselin. The Voyager package also implements plotting functions to plot SFE data and ESDA results.
This package provides tools for differential expression biomarker discovery based on microarray and next-generation sequencing data that leverage efficient semiparametric estimators of the average treatment effect for variable importance analysis. Estimation and inference of the (marginal) average treatment effects of potential biomarkers are computed by targeted minimum loss-based estimation, with joint, stable inference constructed across all biomarkers using a generalization of moderated statistics for use with the estimated efficient influence function. The procedure accommodates the use of ensemble machine learning for the estimation of nuisance functions.
This package provides different high-level graphics functions for displaying large datasets, displaying circular data in a very flexible way, finding local maxima, brewing color ramps, drawing nice arrows, zooming 2D-plots, creating figures with differently colored margin and plot region. In addition, the package contains auxiliary functions for data manipulation like omitting observations with irregular values or selecting data by logical vectors, which include NAs. Other functions are especially useful in spectroscopy and analyses of environmental data: robust baseline fitting, finding peaks in spectra, converting humidity measures.
The rust libc crate provides all of the definitions necessary to easily interoperate with C code (or "C-like" code) on each of the platforms that Rust supports. This includes type definitions (e.g., c_int), constants (e.g., EINVAL) as well as function headers (e.g., malloc).
This crate exports all underlying platform types, functions, and constants under the crate root, so all items are accessible as libc::foo. The types and values of all the exported APIs match the platform that libc is compiled for.
This package exposes combinators that can wrap arbitrary monadic actions. They run the action and potentially retry running it with some configurable delay for a configurable number of times. The purpose is to make it easier to work with IO and especially network IO actions that often experience temporary failure and warrant retrying of the original action. For example, a database query may time out for a while, in which case we should hang back for a bit and retry the query instead of simply raising an exception.
Estimate sample sizes needed to capture target levels of genetic diversity from a population (multivariate allele frequencies) for applications like germplasm conservation and breeding efforts. Compares bootstrap samples to a full population using linear regression, employing the R-squared value to represent the proportion of diversity captured. Iteratively increases sample size until a user-defined target R-squared is met. Offers a parallelized R implementation of a previously developed python method. All ploidy levels are supported. For more details, see Sandercock et al. (2024) <doi:10.1073/pnas.2403505121>.
Algebra of operations for blending, copying, adjusting, and compositing layers in ggplot2'. Supports copying and adjusting the aesthetics or parameters of an existing layer, partitioning a layer into multiple pieces for re-composition, applying affine transformations to layers, and combining layers (or partitions of layers) using blend modes (including commutative blend modes, like multiply and darken). Blend mode support is particularly useful for creating plots with overlapping groups where the layer drawing order does not change the output; see Kindlmann and Scheidegger (2014) <doi:10.1109/TVCG.2014.2346325>.
This package provides a ggplot2 extension offers various tools the creation of complex, multi-plot visualizations. Built on the familiar grammar of graphics, it provides intuitive tools to align and organize plots, making it ideal for complex visualizations. It excels in multi-omics researchâ such as genomics and microbiomesâ by simplifying the visualization of intricate relationships between datasets, for example, linking genes to pathways. Whether you need to stack plots, arrange them around a central figure, or create a circular layout, ggalign delivers flexibility and accuracy with minimal effort.
An R port of the hashids library. hashids generates YouTube-like
hashes from integers or vector of integers. Hashes generated from integers are relatively short, unique and non-seqential. hashids can be used to generate unique ids for URLs and hide database row numbers from the user. By default hashids will avoid generating common English cursewords by preventing certain letters being next to each other. hashids are not one-way: it is easy to encode an integer to a hashid and decode a hashid back into an integer.
Generates the Langa-Weir classification of cognitive function for the 2022 Health and Retirement Study (HRS) cognition data. It is particularly useful for researchers studying cognitive aging who wish to work with the most recent release of HRS data. The package provides user-friendly functions for data preprocessing, scoring, and classification allowing users to easily apply the Langa-Weir classification system. For details regarding the; HRS <https://hrsdata.isr.umich.edu/> and Langa-Weir classifications <https://hrsdata.isr.umich.edu/data-products/langa-weir-classification-cognitive-function-1995-2020>.
Similarity plots based on correlation and median absolute deviation (MAD); adjusting colors for heatmaps; aggregate technical replicates; calculate pairwise fold-changes and log fold-changes; compute one- and two-way ANOVA; simplified interface to package limma (Ritchie et al. (2015), <doi:10.1093/nar/gkv007> ) for moderated t-test and one-way ANOVA; Hamming and Levenshtein (edit) distance of strings as well as optimal alignment scores for global (Needleman-Wunsch) and local (Smith-Waterman) alignments with constant gap penalties (Merkl and Waack (2009), ISBN:978-3-527-32594-8).
This package is deprecated. Please use redatamx instead. Provides an API to work with Redatam (see <https://redatam.org>) databases in both formats: RXDB (new format) and DICX (old format) and running Redatam programs written in SPC language. It's a wrapper around Redatam core and provides functions to open/close a database (redatam_open()/redatam_close()
), list entities and variables from the database (redatam_entities()
, redatam_variables()
) and execute a SPC program and gets the results as data frames (redatam_query()
, redatam_run()
).
This package performs monotonic binning of numeric risk factor in credit rating models (PD, LGD, EAD) development. All functions handle both binary and continuous target variable. Functions that use isotonic regression in the first stage of binning process have an additional feature for correction of minimum percentage of observations and minimum target rate per bin. Additionally, monotonic trend can be identified based on raw data or, if known in advance, forced by functions argument. Missing values and other possible special values are treated separately from so-called complete cases.
User-friendly package for reporting replicability-analysis methods, affixed to meta-analyses summary. The replicability-analysis output provides an assessment of the investigated intervention, where it offers quantification of effect replicability and assessment of the consistency of findings. - Replicability-analysis for fixed-effects and random-effect meta analysis: - r(u)-value; - lower bounds on the number of studies with replicated positive and\or negative effect; - Allows detecting inconsistency of signals; - forest plots with the summary of replicability analysis results; - Allows Replicability-analysis with or without the common-effect assumption.
This package provides a comprehensive suite of tools for analyzing Pakistan's Quarterly National Accounts data. Users can gain detailed insights into Pakistan's economic performance, visualize quarterly trends, and detect patterns and anomalies in key economic indicators. Compare sector contributionsâ including agriculture, industry, and servicesâ to understand their influence on economic growth or decline. Customize analyses by filtering and manipulating data to focus on specific areas of interest. Ideal for policymakers, researchers, and analysts aiming to make informed, data-driven decisions based on timely and detailed economic insights.