_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-gpbayes 0.1.0-6
Dependencies: gsl@2.8
Propagated dependencies: r-rcppprogress@0.4.2 r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.14
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=GPBayes
Licenses: GPL 2+
Synopsis: Tools for Gaussian Process Modeling in Uncertainty Quantification
Description:

Gaussian processes ('GPs') have been widely used to model spatial data, spatio'-temporal data, and computer experiments in diverse areas of statistics including spatial statistics, spatio'-temporal statistics, uncertainty quantification, and machine learning. This package creates basic tools for fitting and prediction based on GPs with spatial data, spatio'-temporal data, and computer experiments. Key characteristics for this GP tool include: (1) the comprehensive implementation of various covariance functions including the Matérn family and the Confluent Hypergeometric family with isotropic form, tensor form, and automatic relevance determination form, where the isotropic form is widely used in spatial statistics, the tensor form is widely used in design and analysis of computer experiments and uncertainty quantification, and the automatic relevance determination form is widely used in machine learning; (2) implementations via Markov chain Monte Carlo ('MCMC') algorithms and optimization algorithms for GP models with all the implemented covariance functions. The methods for fitting and prediction are mainly implemented in a Bayesian framework; (3) model evaluation via Fisher information and predictive metrics such as predictive scores; (4) built-in functionality for simulating GPs with all the implemented covariance functions; (5) unified implementation to allow easy specification of various GPs'.

r-optisel 2.0.9
Propagated dependencies: r-stringr@1.5.1 r-reshape2@1.4.4 r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14 r-quadprog@1.5-8 r-purrr@1.0.4 r-pspline@1.0-21 r-plyr@1.8.9 r-pedigree@1.4.2 r-optisolve@1.0 r-nadiv@2.18.0 r-matrix@1.7-3 r-mass@7.3-65 r-magic@1.6-1 r-kinship2@1.9.6.2 r-foreach@1.5.2 r-ecosolver@0.5.5 r-doparallel@1.0.17 r-data-table@1.17.4
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://cran.r-project.org/package=optiSel
Licenses: GPL 2
Synopsis: Optimum Contribution Selection and Population Genetics
Description:

This package provides a framework for the optimization of breeding programs via optimum contribution selection and mate allocation. An easy to use set of function for computation of optimum contributions of selection candidates, and of the population genetic parameters to be optimized. These parameters can be estimated using pedigree or genotype information, and include kinships, kinships at native haplotype segments, and breed composition of crossbred individuals. They are suitable for managing genetic diversity, removing introgressed genetic material, and accelerating genetic gain. Additionally, functions are provided for computing genetic contributions from ancestors, inbreeding coefficients, the native effective size, the native genome equivalent, pedigree completeness, and for preparing and plotting pedigrees. The methods are described in:\n Wellmann, R., and Pfeiffer, I. (2009) <doi:10.1017/S0016672309000202>.\n Wellmann, R., and Bennewitz, J. (2011) <doi:10.2527/jas.2010-3709>.\n Wellmann, R., Hartwig, S., Bennewitz, J. (2012) <doi:10.1186/1297-9686-44-34>.\n de Cara, M. A. R., Villanueva, B., Toro, M. A., Fernandez, J. (2013) <doi:10.1111/mec.12560>.\n Wellmann, R., Bennewitz, J., Meuwissen, T.H.E. (2014) <doi:10.1017/S0016672314000196>.\n Wellmann, R. (2019) <doi:10.1186/s12859-018-2450-5>.

r-txshift 0.3.8
Propagated dependencies: r-stringr@1.5.1 r-scales@1.4.0 r-rdpack@2.6.4 r-mvtnorm@1.3-3 r-lspline@1.0-0 r-latex2exp@0.9.6 r-haldensify@0.2.8 r-hal9001@0.4.6 r-ggplot2@3.5.2 r-data-table@1.17.4 r-assertthat@0.2.1
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/nhejazi/txshift
Licenses: Expat
Synopsis: Efficient Estimation of the Causal Effects of Stochastic Interventions
Description:

Efficient estimation of the population-level causal effects of stochastic interventions on a continuous-valued exposure. Both one-step and targeted minimum loss estimators are implemented for the counterfactual mean value of an outcome of interest under an additive modified treatment policy, a stochastic intervention that may depend on the natural value of the exposure. To accommodate settings with outcome-dependent two-phase sampling, procedures incorporating inverse probability of censoring weighting are provided to facilitate the construction of inefficient and efficient one-step and targeted minimum loss estimators. The causal parameter and its estimation were first described by DÃ az and van der Laan (2013) <doi:10.1111/j.1541-0420.2011.01685.x>, while the multiply robust estimation procedure and its application to data from two-phase sampling designs is detailed in NS Hejazi, MJ van der Laan, HE Janes, PB Gilbert, and DC Benkeser (2020) <doi:10.1111/biom.13375>. The software package implementation is described in NS Hejazi and DC Benkeser (2020) <doi:10.21105/joss.02447>. Estimation of nuisance parameters may be enhanced through the Super Learner ensemble model in sl3', available for download from GitHub using remotes::install_github("tlverse/sl3")'.

r-stats19 3.4.0
Propagated dependencies: r-sf@1.0-21 r-readr@2.1.5 r-lubridate@1.9.4 r-jsonlite@2.0.0 r-dplyr@1.1.4 r-curl@6.2.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/ropensci/stats19
Licenses: GPL 3
Synopsis: Work with Open Road Traffic Casualty Data from Great Britain
Description:

Work with and download road traffic casualty data from Great Britain. Enables access to the UK's official road safety statistics, STATS19'. Enables users to specify a download directory for the data, which can be set permanently by adding `STATS19_DOWNLOAD_DIRECTORY=/path/to/a/dir` to your `.Renviron` file, which can be opened with `usethis::edit_r_environ()`. The data is provided as a series of `.csv` files. This package downloads, reads-in and formats the data, making it suitable for analysis. See the stats19 vignette for details. Data available from 1979 to 2024. See the official data series at <https://www.data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-accidents-safety-data>. The package is described in a paper in the Journal of Open Source Software (Lovelace et al. 2019) <doi:10.21105/joss.01181>. See Gilardi et al. (2022) <doi:10.1111/rssa.12823>, Vidal-Tortosa et al. (2021) <doi:10.1016/j.jth.2021.101291>, Tait et al. (2023) <doi:10.1016/j.aap.2022.106895>, and León et al. (2025) <doi:10.18637/jss.v114.i09> for examples of how the data can be used for methodological and empirical research.

r-dparser 1.3.1-13
Propagated dependencies: r-digest@0.6.37
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://nlmixr2.github.io/dparser-R/
Licenses: Modified BSD
Synopsis: Port of 'Dparser' Package
Description:

This package provides a Scannerless GLR parser/parser generator. Note that GLR standing for "generalized LR", where L stands for "left-to-right" and R stands for "rightmost (derivation)". For more information see <https://en.wikipedia.org/wiki/GLR_parser>. This parser is based on the Tomita (1987) algorithm. (Paper can be found at <https://aclanthology.org/P84-1073.pdf>). The original dparser package documentation can be found at <https://dparser.sourceforge.net/>. This allows you to add mini-languages to R (like rxode2's ODE mini-language Wang, Hallow, and James 2015 <DOI:10.1002/psp4.12052>) or to parse other languages like NONMEM to automatically translate them to R code. To use this in your code, add a LinkingTo dparser in your DESCRIPTION file and instead of using #include <dparse.h> use #include <dparser.h>. This also provides a R-based port of the make_dparser <https://dparser.sourceforge.net/d/make_dparser.cat> command called mkdparser(). Additionally you can parse an arbitrary grammar within R using the dparse() function, which works on most OSes and is mainly for grammar testing. The fastest parsing, of course, occurs at the C level, and is suggested.

r-edne-eq 1.0
Propagated dependencies: r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=EDNE.EQ
Licenses: GPL 3
Synopsis: Implements the EDNE-Test for Equivalence
Description:

Package implements the EDNE-test for equivalence according to Hoffelder et al. (2015) <DOI:10.1080/10543406.2014.920344>. "EDNE" abbreviates "Euclidean Distance between the Non-standardized Expected values". The EDNE-test for equivalence is a multivariate two-sample equivalence test. Distance measure of the test is the Euclidean distance. The test is an asymptotically valid test for the family of distributions fulfilling the assumptions of the multivariate central limit theorem (see Hoffelder et al.,2015). The function EDNE.EQ() implements the EDNE-test for equivalence according to Hoffelder et al. (2015). The function EDNE.EQ.dissolution.profiles() implements a variant of the EDNE-test for equivalence analyses of dissolution profiles (see Suarez-Sharp et al.,2020 <DOI:10.1208/s12248-020-00458-9>). EDNE.EQ.dissolution.profiles() checks whether the quadratic mean of the differences of the expected values of both dissolution profile populations is statistically significantly smaller than 10 [\% of label claim]. The current regulatory standard approach for equivalence analyses of dissolution profiles is the similarity factor f2. The statistical hypotheses underlying EDNE.EQ.dissolution.profiles() coincide with the hypotheses for f2 (see Hoffelder et al.,2015, Suarez-Sharp et al., 2020).

r-connect 0.7.27
Propagated dependencies: r-qgraph@1.9.8
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=ConNEcT
Licenses: GPL 2+
Synopsis: Contingency Measure-Based Networks for Binary Time Series
Description:

The ConNEcT approach investigates the pairwise association strength of binary time series by calculating contingency measures and depicts the results in a network. The package includes features to explore and visualize the data. To calculate the pairwise concurrent or temporal sequenced relationship between the variables, the package provides seven contingency measures (proportion of agreement, classical & corrected Jaccard, Cohen's kappa, phi correlation coefficient, odds ratio, and log odds ratio), however, others can easily be implemented. The package also includes non-parametric significance tests, that can be applied to test whether the contingency value quantifying the relationship between the variables is significantly higher than chance level. Most importantly this test accounts for auto-dependence and relative frequency.See Bodner et al.(2021) <doi: 10.1111/bmsp.12222>.Finally, a network can be drawn. Variables depicted the nodes of the network, with the node size adapted to the prevalence. The association strength between the variables defines the undirected (concurrent) or directed (temporal sequenced) links between the nodes. The results of the non-parametric significance test can be included by depicting either all links or only the significant ones. Tutorial see Bodner et al.(2021) <doi:10.3758/s13428-021-01760-w>.

r-datasum 0.1.0
Propagated dependencies: r-nortest@1.0-4 r-moments@0.14.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://github.com/Uzairkhan11w/DataSum
Licenses: GPL 3
Synopsis: Comprehensive Data Summarization for Statistical Analysis
Description:

Summarizing data frames by calculating various statistical measures, including measures of central tendency, dispersion, skewness(), kurtosis(), and normality tests. The package leverages the moments package for calculating statistical moments and related measures, the dplyr package for data manipulation, and the nortest package for normality testing. DataSum includes functions such as getmode() for finding the mode(s) of a data vector, shapiro_normality_test() for performing the Shapiro-Wilk test (Shapiro & Wilk 1965 <doi:10.1093/biomet/52.3-4.591>) (or the Anderson-Darling test when the data length is outside the valid range for the Shapiro-Wilk test) (Stephens 1974 <doi:10.1080/01621459.1974.10480196>), Datum() for generating a comprehensive summary of a data vector with various statistics (including data type, sample size, mean, mode, median, variance, standard deviation, maximum, minimum, range, skewness(), kurtosis(), and normality test result) (Joanes & Gill 1998 <doi:10.1111/1467-9884.00122>), and DataSumm() for applying the Datum() function to each column of a data frame. Emphasizing the importance of normality testing, the package provides robust tools to validate whether data follows a normal distribution, a fundamental assumption in many statistical analyses and models.

r-jmatrix 1.5.2
Propagated dependencies: r-rcpp@1.0.14 r-memuse@4.2-3
Channel: guix-cran
Location: guix-cran/packages/j.scm (guix-cran packages j)
Home page: https://cran.r-project.org/package=jmatrix
Licenses: GPL 2+
Synopsis: Read from/Write to Disk Matrices with any Data Type in a Binary Format
Description:

This package provides a mainly instrumental package meant to allow other packages whose core is written in C++ to read, write and manipulate matrices in a binary format so that the memory used for them is no more than strictly needed. Its functionality is already inside parallelpam and scellpam', so if you have installed any of these, you do not need to install jmatrix'. Using just the needed memory is not always true with R matrices or vectors, since by default they are of double type. Trials like the float package have been done, but to use them you have to coerce a matrix already loaded in R memory to a float matrix, and then you can delete it. The problem comes when your computer has not memory enough to hold the matrix in the first place, so you are forced to load it by chunks. This is the problem this package tries to address (with partial success, but this is a difficult problem since R is not a strictly typed language, which is anyway quite hard to get in an interpreted language). This package allows the creation and manipulation of full, sparse and symmetric matrices of any standard data type.

r-lfproqc 1.4.1
Propagated dependencies: r-vsn@3.76.0 r-vim@6.2.2 r-tidyselect@1.2.1 r-tidyr@1.3.1 r-reshape2@1.4.4 r-reshape@0.8.9 r-plotly@4.10.4 r-pcamethods@2.0.0 r-matrixstats@1.5.0 r-mass@7.3-65 r-magrittr@2.0.3 r-limma@3.64.1 r-laeken@0.5.3 r-hmisc@5.2-3 r-ggplot2@3.5.2 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://github.com/kabilansbio/lfproQC
Licenses: GPL 3
Synopsis: Quality Control for Label-Free Proteomics Expression Data
Description:

Label-free bottom-up proteomics expression data is often affected by data heterogeneity and missing values. Normalization and missing value imputation are commonly used techniques to address these issues and make the dataset suitable for further downstream analysis. This package provides an optimal combination of normalization and imputation methods for the dataset. The package utilizes three normalization methods and three imputation methods.The statistical evaluation measures named pooled co-efficient of variance, pooled estimate of variance and pooled median absolute deviation are used for selecting the best combination of normalization and imputation method for the given dataset. The user can also visualize the results by using various plots available in this package. The user can also perform the differential expression analysis between two sample groups with the function included in this package. The chosen three normalization methods, three imputation methods and three evaluation measures were chosen for this study based on the research papers published by Välikangas et al. (2016) <doi:10.1093/bib/bbw095>, Jin et al. (2021) <doi:10.1038/s41598-021-81279-4> and Srivastava et al. (2023) <doi:10.2174/1574893618666230223150253>.This work has published by Sakthivel et al. (2025) <doi:10.1021/acs.jproteome.4c00552>.

r-optical 1.7.1
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://scenic555.github.io/optical/
Licenses: GPL 3+
Synopsis: Optimal Item Calibration
Description:

The restricted optimal design method is implemented to optimally allocate a set of items that require calibration to a group of examinees. The optimization process is based on the method described in detail by Ul Hassan and Miller in their works published in (2019) <doi:10.1177/0146621618824854> and (2021) <doi:10.1016/j.csda.2021.107177>. To use the method, preliminary item characteristics must be provided as input. These characteristics can either be expert guesses or based on previous calibration with a small number of examinees. The item characteristics should be described in the form of parameters for an Item Response Theory (IRT) model. These models can include the Rasch model, the 2-parameter logistic model, the 3-parameter logistic model, or a mixture of these models. The output consists of a set of rules for each item that determine which examinees should be assigned to each item. The efficiency or gain achieved through the optimal design is quantified by comparing it to a random allocation. This comparison allows for an assessment of how much improvement or advantage is gained by using the optimal design approach. This work was supported by the Swedish Research Council (Vetenskapsrådet) Grant 2019-02706.

r-trainer 2.2.2
Propagated dependencies: r-xgboost@1.7.11.1 r-stringr@1.5.1 r-rpart@4.1.24 r-rocr@1.0-11 r-randomforest@4.7-1.2 r-nnet@7.3-20 r-neuralnet@1.44.2 r-mass@7.3-65 r-kknn@1.4.1 r-glmnet@4.1-8 r-ggplot2@3.5.2 r-gbm@2.2.2 r-e1071@1.7-16 r-dplyr@1.1.4 r-adabag@5.0 r-ada@2.0-5
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://promidat.website/
Licenses: GPL 2+
Synopsis: Predictive (Classification and Regression) Models Homologator
Description:

This package provides methods to unify the different ways of creating predictive models and their different predictive formats for classification and regression. It includes methods such as K-Nearest Neighbors Schliep, K. P. (2004) <doi:10.5282/ubm/epub.1769>, Decision Trees Leo Breiman, Jerome H. Friedman, Richard A. Olshen, Charles J. Stone (2017) <doi:10.1201/9781315139470>, ADA Boosting Esteban Alfaro, Matias Gamez, Noelia Garcà a (2013) <doi:10.18637/jss.v054.i02>, Extreme Gradient Boosting Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>, Random Forest Breiman (2001) <doi:10.1023/A:1010933404324>, Neural Networks Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>, Support Vector Machines Bennett, K. P. & Campbell, C. (2000) <doi:10.1145/380995.380999>, Bayesian Methods Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995) <doi:10.1201/9780429258411>, Linear Discriminant Analysis Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>, Quadratic Discriminant Analysis Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>, Logistic Regression Dobson, A. J., & Barnett, A. G. (2018) <doi:10.1201/9781315182780> and Penalized Logistic Regression Friedman, J. H., Hastie, T., & Tibshirani, R. (2010) <doi:10.18637/jss.v033.i01>.

r-asmbpls 1.0.0
Propagated dependencies: r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14 r-ggpubr@0.6.0 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://cran.r-project.org/package=asmbPLS
Licenses: GPL 2+
Synopsis: Predicting and Classifying Patient Phenotypes with Multi-Omics Data
Description:

Adaptive Sparse Multi-block Partial Least Square, a supervised algorithm, is an extension of the Sparse Multi-block Partial Least Square, which allows different quantiles to be used in different blocks of different partial least square components to decide the proportion of features to be retained. The best combinations of quantiles can be chosen from a set of user-defined quantiles combinations by cross-validation. By doing this, it enables us to do the feature selection for different blocks, and the selected features can then be further used to predict the outcome. For example, in biomedical applications, clinical covariates plus different types of omics data such as microbiome, metabolome, mRNA data, methylation data, copy number variation data might be predictive for patients outcome such as survival time or response to therapy. Different types of data could be put in different blocks and along with survival time to fit the model. The fitted model can then be used to predict the survival for the new samples with the corresponding clinical covariates and omics data. In addition, Adaptive Sparse Multi-block Partial Least Square Discriminant Analysis is also included, which extends Adaptive Sparse Multi-block Partial Least Square for classifying the categorical outcome.

r-gcestim 0.1.0
Propagated dependencies: r-zoo@1.8-14 r-viridis@0.6.5 r-simstudy@0.9.0 r-shinywidgets@0.9.0 r-shinydashboardplus@2.0.5 r-shiny@1.10.0 r-rstudioapi@0.17.1 r-rsolnp@1.16 r-rlang@1.1.6 r-readxl@1.4.5 r-pracma@2.4.4 r-plotly@4.10.4 r-pathviewr@1.1.8 r-optimx@2025-4.9 r-optimparallel@1.0-2 r-miniui@0.1.2 r-meboot@1.4-9.4 r-magrittr@2.0.3 r-lbfgsb3c@2024-3.5 r-lbfgs@1.2.1.2 r-latex2exp@0.9.6 r-hdrcde@3.4 r-ggpubr@0.6.0 r-ggplot2@3.5.2 r-ggdist@3.3.3 r-dt@0.33 r-downlit@0.4.4 r-data-table@1.17.4 r-clustergeneration@1.3.8 r-bayestestr@0.16.0
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/jorgevazcabral/GCEstim
Licenses: GPL 3
Synopsis: Regression Coefficients Estimation Using the Generalized Cross Entropy
Description:

Estimation and inference using the Generalized Maximum Entropy (GME) and Generalized Cross Entropy (GCE) framework, a flexible method for solving ill-posed inverse problems and parameter estimation under uncertainty (Golan, Judge, and Miller (1996, ISBN:978-0471145925) "Maximum Entropy Econometrics: Robust Estimation with Limited Data"). The package includes routines for generalized cross entropy estimation of linear models including the implementation of a GME-GCE two steps approach. Diagnostic tools, and options to incorporate prior information through support and prior distributions are available (Macedo, Cabral, Afreixo, Macedo and Angelelli (2025) <doi:10.1007/978-3-031-97589-9_21>). In particular, support spaces can be defined by the user or be internally computed based on the ridge trace or on the distribution of standardized regression coefficients. Different optimization methods for the objective function can be used. An adaptation of the normalized entropy aggregation (Macedo and Costa (2019) <doi:10.1007/978-3-030-26036-1_2> "Normalized entropy aggregation for inhomogeneous large-scale data") and a two-stage maximum entropy approach for time series regression (Macedo (2022) <doi:10.1080/03610918.2022.2057540>) are also available. Suitable for applications in econometrics, health, signal processing, and other fields requiring robust estimation under data constraints.

r-polysat 1.7-7
Propagated dependencies: r-rcpp@1.0.14
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/lvclark/polysat/wiki
Licenses: GPL 2
Synopsis: Tools for Polyploid Microsatellite Analysis
Description:

This package provides a collection of tools to handle microsatellite data of any ploidy (and samples of mixed ploidy) where allele copy number is not known in partially heterozygous genotypes. It can import and export data in ABI GeneMapper', Structure', ATetra', Tetrasat'/'Tetra', GenoDive', SPAGeDi', POPDIST', STRand', and binary presence/absence formats. It can calculate pairwise distances between individuals using a stepwise mutation model or infinite alleles model, with or without taking ploidies and allele frequencies into account. These distances can be used for the calculation of clonal diversity statistics or used for further analysis in R. Allelic diversity statistics and Polymorphic Information Content are also available. polysat can assist the user in estimating the ploidy of samples, and it can estimate allele frequencies in populations, calculate pairwise or global differentiation statistics based on those frequencies, and export allele frequencies to SPAGeDi and adegenet'. Functions are also included for assigning alleles to isoloci in cases where one pair of microsatellite primers amplifies alleles from two or more independently segregating isoloci. polysat is described by Clark and Jasieniuk (2011) <doi:10.1111/j.1755-0998.2011.02985.x> and Clark and Schreier (2017) <doi:10.1111/1755-0998.12639>.

r-dromics 2.6-2
Propagated dependencies: r-summarizedexperiment@1.38.1 r-rlang@1.1.6 r-limma@3.64.1 r-ggplot2@3.5.2 r-ggfortify@0.4.17 r-deseq2@1.48.1
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://lbbe.univ-lyon1.fr/fr/dromics
Licenses: GPL 2+
Synopsis: Dose Response for Omics
Description:

Several functions are provided for dose-response (or concentration-response) characterization from omics data. DRomics is especially dedicated to omics data obtained using a typical dose-response design, favoring a great number of tested doses (or concentrations) rather than a great number of replicates (no need of replicates). DRomics provides functions 1) to check, normalize and or transform data, 2) to select monotonic or biphasic significantly responding items (e.g. probes, metabolites), 3) to choose the best-fit model among a predefined family of monotonic and biphasic models to describe each selected item, 4) to derive a benchmark dose or concentration and a typology of response from each fitted curve. In the available version data are supposed to be single-channel microarray data in log2, RNAseq data in raw counts, or already pretreated continuous omics data (such as metabolomic data) in log scale. In order to link responses across biological levels based on a common method, DRomics also handles apical data as long as they are continuous and follow a normal distribution for each dose or concentration, with a common standard error. For further details see Delignette-Muller et al (2023) <DOI:10.24072/pcjournal.325> and Larras et al (2018) <DOI:10.1021/acs.est.8b04752>.

r-hrtlfmc 0.1.0
Propagated dependencies: r-fmc@1.0.1
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=hrtlFMC
Licenses: GPL 3
Synopsis: Half Replicate of Two Level Factorial Run Order with Minimum Level Changes
Description:

It is used to construct run sequences with minimum changes for half replicate of two level factorial run order. Experimenter can save time and resources by minimizing the number of changes in levels of individual factor and therefore the total number of changes. It consists of the function minimal_hrtlf(). This technique can be employed to any half replicate of two level factorial run order where the number of factors are greater than two. In Design of Experiments (DOE) theory, two level of a factor can be represented as integers e.g. - 1 for low and 1 for high. User is expected to enter total number of factors to be considered in the experiment. minimal_hrtlf() provides the required run sequences for the input number of factors. The output also gives the number of changes of each factor along with total number of changes in the run sequence. Due to restricted randomization the minimally changed run sequences of half replicate of two level factorial run order will be affected by trend effect. The output also provides the Trend Factor value of the run order. Trend factor value will lies between 0 to 1. Higher the values, lesser the influence of trend effects on the run order.

r-fdapace 0.6.0
Propagated dependencies: r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.14 r-pracma@2.4.4 r-numderiv@2016.8-1.1 r-matrix@1.7-3 r-mass@7.3-65 r-hmisc@5.2-3
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://github.com/functionaldata/tPACE
Licenses: Modified BSD
Synopsis: Functional Data Analysis and Empirical Dynamics
Description:

This package provides a versatile package that provides implementation of various methods of Functional Data Analysis (FDA) and Empirical Dynamics. The core of this package is Functional Principal Component Analysis (FPCA), a key technique for functional data analysis, for sparsely or densely sampled random trajectories and time courses, via the Principal Analysis by Conditional Estimation (PACE) algorithm. This core algorithm yields covariance and mean functions, eigenfunctions and principal component (scores), for both functional data and derivatives, for both dense (functional) and sparse (longitudinal) sampling designs. For sparse designs, it provides fitted continuous trajectories with confidence bands, even for subjects with very few longitudinal observations. PACE is a viable and flexible alternative to random effects modeling of longitudinal data. There is also a Matlab version (PACE) that contains some methods not available on fdapace and vice versa. Updates to fdapace were supported by grants from NIH Echo and NSF DMS-1712864 and DMS-2014626. Please cite our package if you use it (You may run the command citation("fdapace") to get the citation format and bibtex entry). References: Wang, J.L., Chiou, J., Müller, H.G. (2016) <doi:10.1146/annurev-statistics-041715-033624>; Chen, K., Zhang, X., Petersen, A., Müller, H.G. (2017) <doi:10.1007/s12561-015-9137-5>.

r-feddata 4.3.0
Dependencies: gdal@3.8.2
Propagated dependencies: r-xml2@1.3.8 r-tidyr@1.3.1 r-tibble@3.2.1 r-terra@1.8-50 r-stringr@1.5.1 r-sf@1.0-21 r-readr@2.1.5 r-purrr@1.0.4 r-progress@1.2.3 r-magrittr@2.0.3 r-lubridate@1.9.4 r-lifecycle@1.0.4 r-jsonlite@2.0.0 r-igraph@2.1.4 r-httr@1.4.7 r-glue@1.8.0 r-ggplot2@3.5.2 r-dplyr@1.1.4 r-curl@6.2.3
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://docs.ropensci.org/FedData/
Licenses: Expat
Synopsis: Download Geospatial Data Available from Several Federated Data Sources
Description:

Download geospatial data available from several federated data sources (mainly sources maintained by the US Federal government). Currently, the package enables extraction from nine datasets: The National Elevation Dataset digital elevation models (<https://www.usgs.gov/3d-elevation-program> 1 and 1/3 arc-second; USGS); The National Hydrography Dataset (<https://www.usgs.gov/national-hydrography/national-hydrography-dataset>; USGS); The Soil Survey Geographic (SSURGO) database from the National Cooperative Soil Survey (<https://websoilsurvey.sc.egov.usda.gov/>; NCSS), which is led by the Natural Resources Conservation Service (NRCS) under the USDA; the Global Historical Climatology Network (<https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily>; GHCN), coordinated by National Climatic Data Center at NOAA; the Daymet gridded estimates of daily weather parameters for North America, version 4, available from the Oak Ridge National Laboratory's Distributed Active Archive Center (<https://daymet.ornl.gov/>; DAAC); the International Tree Ring Data Bank; the National Land Cover Database (<https://www.mrlc.gov/>; NLCD); the Cropland Data Layer from the National Agricultural Statistics Service (<https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php>; NASS); and the PAD-US dataset of protected area boundaries (<https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-data-overview>; USGS).

r-metaggr 0.3.0
Propagated dependencies: r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=metaggR
Licenses: GPL 2
Synopsis: Calculate the Knowledge-Weighted Estimate
Description:

According to a phenomenon known as "the wisdom of the crowds," combining point estimates from multiple judges often provides a more accurate aggregate estimate than using a point estimate from a single judge. However, if the judges use shared information in their estimates, the simple average will over-emphasize this common component at the expense of the judgesâ private information. Asa Palley & Ville Satopää (2021) "Boosting the Wisdom of Crowds Within a Single Judgment Problem: Selective Averaging Based on Peer Predictions" <https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3504286> proposes a procedure for calculating a weighted average of the judgesâ individual estimates such that resulting aggregate estimate appropriately combines the judges collective information within a single estimation problem. The authors use both simulation and data from six experimental studies to illustrate that the weighting procedure outperforms existing averaging-like methods, such as the equally weighted average, trimmed average, and median. This aggregate estimate -- know as "the knowledge-weighted estimate" -- inputs a) judges estimates of a continuous outcome (E) and b) predictions of others average estimate of this outcome (P). In this R-package, the function knowledge_weighted_estimate(E,P) implements the knowledge-weighted estimate. Its use is illustrated with a simple stylized example and on real-world experimental data.

r-pcmbase 1.2.15
Propagated dependencies: r-xtable@1.8-4 r-mvtnorm@1.3-3 r-ggplot2@3.5.2 r-expm@1.0-0 r-data-table@1.17.4 r-ape@5.8-1 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://venelin.github.io/PCMBase/
Licenses: GPL 3+
Synopsis: Simulation and Likelihood Calculation of Phylogenetic Comparative Models
Description:

Phylogenetic comparative methods represent models of continuous trait data associated with the tips of a phylogenetic tree. Examples of such models are Gaussian continuous time branching stochastic processes such as Brownian motion (BM) and Ornstein-Uhlenbeck (OU) processes, which regard the data at the tips of the tree as an observed (final) state of a Markov process starting from an initial state at the root and evolving along the branches of the tree. The PCMBase R package provides a general framework for manipulating such models. This framework consists of an application programming interface for specifying data and model parameters, and efficient algorithms for simulating trait evolution under a model and calculating the likelihood of model parameters for an assumed model and trait data. The package implements a growing collection of models, which currently includes BM, OU, BM/OU with jumps, two-speed OU as well as mixed Gaussian models, in which different types of the above models can be associated with different branches of the tree. The PCMBase package is limited to trait-simulation and likelihood calculation of (mixed) Gaussian phylogenetic models. The PCMFit package provides functionality for inference of these models to tree and trait data. The package web-site <https://venelin.github.io/PCMBase/> provides access to the documentation and other resources.

r-genmeta 0.2.0
Propagated dependencies: r-pracma@2.4.4 r-matrix@1.7-3 r-mass@7.3-65 r-magic@1.6-1
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=GENMETA
Licenses: GPL 2+ GPL 3+
Synopsis: Implements Generalized Meta-Analysis Using Iterated Reweighted Least Squares Algorithm
Description:

Generalized meta-analysis is a technique for estimating parameters associated with a multiple regression model through meta-analysis of studies which may have information only on partial sets of the regressors. It estimates the effects of each variable while fully adjusting for all other variables that are measured in at least one of the studies. Using algebraic relationships between regression parameters in different dimensions, a set of moment equations is specified for estimating the parameters of a maximal model through information available on sets of parameter estimates from a series of reduced models available from the different studies. The specification of the equations requires a reference dataset to estimate the joint distribution of the covariates. These equations are solved using the generalized method of moments approach, with the optimal weighting of the equations taking into account uncertainty associated with estimates of the parameters of the reduced models. The proposed framework is implemented using iterated reweighted least squares algorithm for fitting generalized linear regression models. For more details about the method, please see pre-print version of the manuscript on generalized meta-analysis by Prosenjit Kundu, Runlong Tang and Nilanjan Chatterjee (2018) <doi:10.1093/biomet/asz030>.The current version (0.2.0) is updated to address some of the stability issues in the previous version (0.1).

r-infoset 4.1
Propagated dependencies: r-quadprog@1.5-8 r-mixtools@2.0.0.1 r-matrix@1.7-3 r-dendextend@1.19.0 r-colorspace@2.1-1
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=INFOSET
Licenses: GPL 2+
Synopsis: Computing a New Informative Distribution Set of Asset Returns
Description:

Estimation of the most-left informative set of gross returns (i.e., the informative set). The procedure to compute the informative set adjusts the method proposed by Mariani et al. (2022a) <doi:10.1007/s11205-020-02440-6> and Mariani et al. (2022b) <doi:10.1007/s10287-022-00422-2> to gross returns of financial assets. This is accomplished through an adaptive algorithm that identifies sub-groups of gross returns in each iteration by approximating their distribution with a sequence of two-component log-normal mixtures. These sub-groups emerge when a significant change in the distribution occurs below the median of the financial returns, with their boundary termed as the â change point" of the mixture. The process concludes when no further change points are detected. The outcome encompasses parameters of the leftmost mixture distributions and change points of the analyzed financial time series. The functionalities of the INFOSET package include: (i) modelling asset distribution detecting the parameters which describe left tail behaviour (infoset function), (ii) clustering, (iii) labeling of the financial series for predictive and classification purposes through a Left Risk measure based on the first change point (LR_cp function) (iv) portfolio construction (ptf_construction function). The package also provide a specific function to construct rolling windows of different length size and overlapping time.

r-ftrcool 2.0.0
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://cran.r-project.org/package=ftrCOOL
Licenses: GPL 3
Synopsis: Feature Extraction from Biological Sequences
Description:

Extracts features from biological sequences. It contains most features which are presented in related work and also includes features which have never been introduced before. It extracts numerous features from nucleotide and peptide sequences. Each feature converts the input sequences to discrete numbers in order to use them as predictors in machine learning models. There are many features and information which are hidden inside a sequence. Utilizing the package, users can convert biological sequences to discrete models based on chosen properties. References: iLearn Z. Chen et al. (2019) <DOI:10.1093/bib/bbz041>. iFeature Z. Chen et al. (2018) <DOI:10.1093/bioinformatics/bty140>. <https://CRAN.R-project.org/package=rDNAse>. PseKRAAC Y. Zuo et al. PseKRAAC: a flexible web server for generating pseudo K-tuple reduced amino acids composition (2017) <DOI:10.1093/bioinformatics/btw564>. iDNA6mA-PseKNC P. Feng et al. iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC (2019) <DOI:10.1016/j.ygeno.2018.01.005>. I. Dubchak et al. Prediction of protein folding class using global description of amino acid sequence (1995) <DOI:10.1073/pnas.92.19.8700>. W. Chen et al. Identification and analysis of the N6-methyladenosine in the Saccharomyces cerevisiae transcriptome (2015) <DOI:10.1038/srep13859>.

Page: 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258
Total results: 30177