Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Code for backShift', an algorithm to estimate the connectivity matrix of a directed (possibly cyclic) graph with hidden variables. The underlying system is required to be linear and we assume that observations under different shift interventions are available. For more details, see <arXiv:1506.02494>.
Efficient methods for Bayesian inference of state space models via Markov chain Monte Carlo (MCMC) based on parallel importance sampling type weighted estimators (Vihola, Helske, and Franks, 2020, <doi:10.1111/sjos.12492>), particle MCMC, and its delayed acceptance version. Gaussian, Poisson, binomial, negative binomial, and Gamma observation densities and basic stochastic volatility models with linear-Gaussian state dynamics, as well as general non-linear Gaussian models and discretised diffusion models are supported. See Helske and Vihola (2021, <doi:10.32614/RJ-2021-103>) for details.
Generates a list, with a size defined by the user, containing the main scientific references and the frequency distribution of authors and journals in the list obtained. The database is a dataframe with academic production metadata made available by bibliographic collections such as Scopus, Web of Science, etc. The temporal evolution of scientific production on a given topic is presented and ordered lists of articles are constructed by number of citations and of authors and journals by level of productivity. Massimo Aria, Corrado Cuccurullo. (2017) <doi:10.1016/j.joi.2017.08.007>. Caibo Zhou, Wenyan Song. (2021) <doi:10.1016/j.jclepro.2021.126943>.
This package provides a light-weight object-oriented system with python'-like syntax which supports multiple inheritances and incorporates a python'-like method resolution order.
This package provides users with an EZ-to-use platform for representing data with biplots. Currently principal component analysis (PCA), canonical variate analysis (CVA) and simple correspondence analysis (CA) biplots are included. This is accompanied by various formatting options for the samples and axes. Alpha-bags and concentration ellipses are included for visual enhancements and interpretation. For an extensive discussion on the topic, see Gower, J.C., Lubbe, S. and le Roux, N.J. (2011, ISBN: 978-0-470-01255-0) Understanding Biplots. Wiley: Chichester.
The main functions carry out Gibbs sampler routines for nonparametric and semiparametric Bayesian models for random effects meta-analysis.
Generating multiple binary and normal variables simultaneously given marginal characteristics and association structure based on the methodology proposed by Demirtas and Doganay (2012) <DOI:10.1080/10543406.2010.521874>.
Statistical methods for analyzing binary replicates, which are noisy binary measurements of latent binary states. Provides scoring functions (average, median, likelihood-based, and Bayesian) to estimate the probability that an individual is in the positive state. Includes maximum a posteriori estimation via the EM algorithm and full Bayesian inference via Stan. Supports classification with inconclusive decisions and prevalence estimation.
This package provides functions for data preparation, parameter estimation, scoring, and plotting for the BG/BB (Fader, Hardie, and Shang 2010 <doi:10.1287/mksc.1100.0580>), BG/NBD (Fader, Hardie, and Lee 2005 <doi:10.1287/mksc.1040.0098>) and Pareto/NBD and Gamma/Gamma (Fader, Hardie, and Lee 2005 <doi:10.1509/jmkr.2005.42.4.415>) models.
This package implements the Beta Kernel Process (BKP) for nonparametric modeling of spatially varying binomial probabilities, together with its extension, the Dirichlet Kernel Process (DKP), for categorical or multinomial data. The package provides functions for model fitting, predictive inference with uncertainty quantification, posterior simulation, and visualization in one-and two-dimensional input spaces. Multiple kernel functions (Gaussian, Matern 5/2, and Matern 3/2) are supported, with hyperparameters optimized through multi-start gradient-based search. For more details, see Zhao, Qing, and Xu (2025) <doi:10.48550/arXiv.2508.10447>.
Allows access to data from the Brazilian Public Security Information System (SINESP) by state and municipality. It should be emphasized that the package only extracts the data and facilitates its manipulation in R. Therefore, its sole purpose is to support empirical research. All data credits belong to SINESP, an integrated information platform developed and maintained by the National Secretariat of Public Security (SENASP) of the Ministry of Justice and Public Security. <https://www.gov.br/mj/pt-br/assuntos/sua-seguranca/seguranca-publica/sinesp-1>.
This package provides a GUI with which the user can construct and interact with Bootstrap methods on Classical Biplots and with Clustering and/or Disjoint Biplot. This GUI is also aimed for estimate any numerical data matrix using the Clustering and Disjoint Principal component (CDPCA) methodology.
Building on the docking layout manager provided by dockViewR', this provides a flexible front-end to blockr.core'. It provides an extension mechanism which allows for providing means to manipulate a board object via panel-based user interface components.
Fits a piecewise exponential hazard to survival data using a Hierarchical Bayesian model with an Intrinsic Conditional Autoregressive formulation for the spatial dependency in the hazard rates for each piece. This function uses Metropolis- Hastings-Green MCMC to allow the number of split points to vary and also uses Stochastic Search Variable Selection to determine what covariates drive the risk of the event. This function outputs trace plots depicting the number of split points in the hazard and the number of variables included in the hazard. The function saves all posterior quantities to the desired path.
This package provides tools designed to perform and evaluate cluster analysis (including Tocher's algorithm), discriminant analysis and path analysis (standard and under collinearity), as well as some useful miscellaneous tools for dealing with sample size and optimum plot size calculations. A test for seed sample heterogeneity is now available. Mantel's permutation test can be found in this package. A new approach for calculating its power is implemented. biotools also contains tests for genetic covariance components. Heuristic approaches for performing non-parametric spatial predictions of generic response variables and spatial gene diversity are implemented.
This package implements z-test, t-test, and normal moment prior Bayes factors based on summary statistics, along with functionality to perform corresponding power and sample size calculations as described in Pawel and Held (2025) <doi:10.1080/00031305.2025.2467919>.
It offers simplified access to Brazilian macroeconomic and financial indicators selected from official sources, such as the IBGE (Brazilian Institute of Geography and Statistics) via the SIDRA API and the Central Bank of Brazil via the SGS API. It allows users to quickly retrieve and visualize data series such as the unemployment rate and the Selic interest rate. This package was developed for data access and visualization purposes, without generating forecasts or statistical results. For more information, see the official APIs: <https://sidra.ibge.gov.br/> and <https://dadosabertos.bcb.gov.br/dataset/>.
Flags and checks occurrence data that are in Darwin Core format. The package includes generic functions and data as well as some that are specific to bees. This package is meant to build upon and be complimentary to other excellent occurrence cleaning packages, including bdc and CoordinateCleaner'. This package uses datasets from several sources and particularly from the Discover Life Website, created by Ascher and Pickering (2020). For further information, please see the original publication and package website. Publication - Dorey et al. (2023) <doi:10.1101/2023.06.30.547152> and package website - Dorey et al. (2023) <https://github.com/jbdorey/BeeBDC>.
This package provides a "Shiny"" web application for creating interactive Bayesian Network models, learning the structure and parameters of Bayesian networks, and utilities for classic network analysis.
Suite of tools that facilitate exposure-response analysis using Bayesian methods. The package provides a streamlined workflow for fitting types of models that are commonly used in exposure-response analysis - linear and Emax for continuous endpoints, logistic linear and logistic Emax for binary endpoints, as well as performing simulation and visualization. Learn more about the workflow at <https://genentech.github.io/BayesERbook/>.
This package provides an interface to Bank of Japan <https://www.boj.or.jp> statistics.
Search and access more than ten thousand datasets included in BCRPDATA (see <https://estadisticas.bcrp.gob.pe/estadisticas/series/ayuda/bcrpdata> for more information).
Quantify outbreak risk posed by individual importers of a transmissible pathogen. Input parameters of negative binomial offspring distributions for the number of transmissions from each infected individual and initial number of infected. Calculate probabilities of final outbreak size and generations of transmission, as described in Toth et al. (2015) <doi:10.3201/eid2108.150170> and Toth et al. (2016) <doi:10.1016/j.epidem.2016.04.002>.
This package provides functions to compute pair-wise dissimilarities (distance matrices) and multiple-site dissimilarities, separating the turnover and nestedness-resultant components of taxonomic (incidence and abundance based), functional and phylogenetic beta diversity.