Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Plotting package based on the grid system, combining elements of a bubble plot and heatmap to conveniently display two numerical variables, (represented by color and size) grouped by categorical variables on the x and y axes. This is a useful alternative to a forest plot when the data can be grouped in two dimensions, such as predictors x outcomes. It has particular advantages for visualising the metabolic measures produced by the Nightingale Health metabolomics platform, and templates are included for automatically generating figures from these datasets.
Typically, models in R exist in memory and can be saved via regular R serialization. However, some models store information in locations that cannot be saved using R serialization alone. The goal of bundle is to provide a common interface to capture this information, situate it within a portable object, and restore it for use in new settings.
Get z-scores, percentiles, absolute values, and percent of predicted of a reference cohort. Functionality requires installing the data packages adiposerefdata and musclerefdata'. For more information on the underlying research, please visit our website which also includes a graphical interface. The models and underlying data are described in Marquardt JP et al.(planned publication 2025; reserved doi 10.1097/RLI.0000000000001104), "Subcutaneous and Visceral adipose tissue Reference Values from Framingham Heart Study Thoracic and Abdominal CT", *Investigative Radiology* and Tonnesen PE et al. (2023), "Muscle Reference Values from Thoracic and Abdominal CT for Sarcopenia Assessment [column] The Framingham Heart Study", *Investigative Radiology*, <doi:10.1097/RLI.0000000000001012>.
This package implements methods for Bayesian analysis of State Space Models. Includes implementations of the Particle Marginal Metropolis-Hastings algorithm described in Andrieu et al. (2010) <doi:10.1111/j.1467-9868.2009.00736.x> and automatic tuning inspired by Pitt et al. (2012) <doi:10.1016/j.jeconom.2012.06.004> and J. Dahlin and T. B. Schön (2019) <doi:10.18637/jss.v088.c02>.
Maximum likelihood estimation of copula-based zero-inflated (and non-inflated) Poisson and negative binomial count models, based on the article <doi:10.18637/jss.v109.i01>. Supports Frank and Gaussian copulas. Allows for mixed margins (e.g., one margin Poisson, the other zero-inflated negative binomial), and several marginal link functions. Built-in methods for publication-quality tables using texreg', post-estimation diagnostics using DHARMa', and testing for marginal zero-modification via <doi:10.1177/0962280217749991>. For information on copula regression for count data, see Genest and Nešlehová (2007) <doi:10.1017/S0515036100014963> as well as Nikoloulopoulos (2013) <doi:10.1007/978-3-642-35407-6_11>. For information on zero-inflated count regression generally, see Lambert (1992) <https://www.jstor.org/stable/1269547>. The author acknowledges support by NSF DMS-1925119 and DMS-212324.
This package provides tools for the analysis of replication studies using Bayes factors (Pawel and Held, 2022) <doi:10.1111/rssb.12491>.
Data Package that includes several examples of chemical and biological data networks, i.e. data graph structured.
The bootstrap ARDL tests for cointegration is the main functionality of this package. It also acts as a wrapper of the most commond ARDL testing procedures for cointegration: the bound tests of Pesaran, Shin and Smith (PSS; 2001 - <doi:10.1002/jae.616>) and the asymptotic test on the independent variables of Sam, McNown and Goh (SMG: 2019 - <doi:10.1016/j.econmod.2018.11.001>). Bootstrap and bound tests are performed under both the conditional and unconditional ARDL models.
This package provides tools and workflow to choose design parameters in Bayesian adaptive single-arm phase II trial designs with binary endpoint (response, success) with possible stopping for efficacy and futility at interim analyses. Also contains routines to determine and visualize operating characteristics. See Kopp-Schneider et al. (2018) <doi:10.1002/bimj.201700209>.
Fast Bayesian estimation and forecasting of age-specific rates, probabilities, and means, based on Template Model Builder'.
Collection of utilities that improve using Databricks from R. Primarily functions that wrap specific Databricks APIs (<https://docs.databricks.com/api>), RStudio connection pane support, quality of life functions to make Databricks simpler to use.
This package performs CACE (Complier Average Causal Effect analysis) on either a single study or meta-analysis of datasets with binary outcomes, using either complete or incomplete noncompliance information. Our package implements the Bayesian methods proposed in Zhou et al. (2019) <doi:10.1111/biom.13028>, which introduces a Bayesian hierarchical model for estimating CACE in meta-analysis of clinical trials with noncompliance, and Zhou et al. (2021) <doi:10.1080/01621459.2021.1900859>, with an application example on Epidural Analgesia.
Generation of samples from a mix of binary, ordinal and continuous random variables with a pre-specified correlation matrix and marginal distributions. The details of the method are explained in Demirtas et al. (2012) <DOI:10.1002/sim.5362>.
This package contains functions mainly focused to plotting bivariate maps.
Temporal Exponential Random Graph Models (TERGM) estimated by maximum pseudolikelihood with bootstrapped confidence intervals or Markov Chain Monte Carlo maximum likelihood. Goodness of fit assessment for ERGMs, TERGMs, and SAOMs. Micro-level interpretation of ERGMs and TERGMs. The methods are described in Leifeld, Cranmer and Desmarais (2018), JStatSoft <doi:10.18637/jss.v083.i06>.
Best Orthogonalized Subset Selection (BOSS) is a least-squares (LS) based subset selection method, that performs best subset selection upon an orthogonalized basis of ordered predictors, with the computational effort of a single ordinary LS fit. This package provides a highly optimized implementation of BOSS and estimates a heuristic degrees of freedom for BOSS, which can be plugged into an information criterion (IC) such as AICc in order to select the subset from candidates. It provides various choices of IC, including AIC, BIC, AICc, Cp and GCV. It also implements the forward stepwise selection (FS) with no additional computational cost, where the subset of FS is selected via cross-validation (CV). CV is also an option for BOSS. For details see: Tian, Hurvich and Simonoff (2021), "On the Use of Information Criteria for Subset Selection in Least Squares Regression", <arXiv:1911.10191>.
Estimates Bayesian models of list experiments with informative priors. It includes functionalities to estimate different types of list experiment models with varying prior information. See Lu and Traunmüller (2021) <doi:10.2139/ssrn.3871089> for examples and details of estimation.
This package implements Bayesian dynamic factor analysis with Stan'. Dynamic factor analysis is a dimension reduction tool for multivariate time series. bayesdfa extends conventional dynamic factor models in several ways. First, extreme events may be estimated in the latent trend by modeling process error with a student-t distribution. Second, alternative constraints (including proportions are allowed). Third, the estimated dynamic factors can be analyzed with hidden Markov models to evaluate support for latent regimes.
Assess the agreement in method comparison studies by tolerance intervals and errors-in-variables (EIV) regressions. The Ordinary Least Square regressions (OLSv and OLSh), the Deming Regression (DR), and the (Correlated)-Bivariate Least Square regressions (BLS and CBLS) can be used with unreplicated or replicated data. The BLS() and CBLS() are the two main functions to estimate a regression line, while XY.plot() and MD.plot() are the two main graphical functions to display, respectively an (X,Y) plot or (M,D) plot with the BLS or CBLS results. Four hyperbolic statistical intervals are provided: the Confidence Interval (CI), the Confidence Bands (CB), the Prediction Interval and the Generalized prediction Interval. Assuming no proportional bias, the (M,D) plot (Band-Altman plot) may be simplified by calculating univariate tolerance intervals (beta-expectation (type I) or beta-gamma content (type II)). Major updates from last version 1.0.0 are: title shortened, include the new functions BLS.fit() and CBLS.fit() as shortcut of the, respectively, functions BLS() and CBLS(). References: B.G. Francq, B. Govaerts (2016) <doi:10.1002/sim.6872>, B.G. Francq, B. Govaerts (2014) <doi:10.1016/j.chemolab.2014.03.006>, B.G. Francq, B. Govaerts (2014) <http://publications-sfds.fr/index.php/J-SFdS/article/view/262>, B.G. Francq (2013), PhD Thesis, UCLouvain, Errors-in-variables regressions to assess equivalence in method comparison studies, <https://dial.uclouvain.be/pr/boreal/object/boreal%3A135862/datastream/PDF_01/view>.
Some elementary matrix algebra tools are implemented to manage block matrices or partitioned matrix, i.e. "matrix of matrices" (http://en.wikipedia.org/wiki/Block_matrix). The block matrix is here defined as a new S3 object. In this package, some methods for "matrix" object are rewritten for "blockmatrix" object. New methods are implemented. This package was created to solve equation systems with block matrices for the analysis of environmental vector time series . Bugs/comments/questions/collaboration of any kind are warmly welcomed.
Various algorithms for segmentation of 2D and 3D images, such as computed tomography and satellite remote sensing. This package implements Bayesian image analysis using the hidden Potts model with external field prior of Moores et al. (2015) <doi:10.1016/j.csda.2014.12.001>. Latent labels are sampled using chequerboard updating or Swendsen-Wang. Algorithms for the smoothing parameter include pseudolikelihood, path sampling, the exchange algorithm, approximate Bayesian computation (ABC-MCMC and ABC-SMC), and the parametric functional approximate Bayesian (PFAB) algorithm. Refer to Moores, Pettitt & Mengersen (2020) <doi:10.1007/978-3-030-42553-1_6> for an overview and also to <doi:10.1007/s11222-014-9525-6> and <doi:10.1214/18-BA1130> for further details of specific algorithms.
This package provides a novel data-augmentation Markov chain Monte Carlo sampling algorithm to fit a progressive compartmental model of disease in a Bayesian framework Morsomme, R.N., Holloway, S.T., Ryser, M.D. and Xu J. (2024) <doi:10.48550/arXiv.2408.14625>.
The four functions svdcp() ('cp for column partitioned), svdbip() or svdbip2() ('bip for bipartitioned), and svdbips() ('s for a simultaneous optimization of a set of r solutions), correspond to a singular value decomposition (SVD) by blocks notion, by supposing each block depending on relative subspaces, rather than on two whole spaces as usual SVD does. The other functions, based on this notion, are relative to two column partitioned data matrices x and y defining two sets of subsets x_i and y_j of variables and amount to estimate a link between x_i and y_j for the pair (x_i, y_j) relatively to the links associated to all the other pairs. These methods were first presented in: Lafosse R. & Hanafi M.,(1997) <https://eudml.org/doc/106424> and Hanafi M. & Lafosse, R. (2001) <https://eudml.org/doc/106494>.
Efficient sampling for Gaussian linear regression with arbitrary priors, Hahn, He and Lopes (2018) <arXiv:1806.05738>.