Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Package provides functions for estimation and inference in Bayesian quantile regression with ordinal outcomes. An ordinal model with 3 or more outcomes (labeled OR1 model) is estimated by a combination of Gibbs sampling and Metropolis-Hastings (MH) algorithm. Whereas an ordinal model with exactly 3 outcomes (labeled OR2 model) is estimated using a Gibbs sampling algorithm. The summary output presents the posterior mean, posterior standard deviation, 95% credible intervals, and the inefficiency factors along with the two model comparison measures â logarithm of marginal likelihood and the deviance information criterion (DIC). The package also provides functions for computing the covariate effects and other functions that aids either the estimation or inference in quantile ordinal models. Rahman, M. A. (2016).â Bayesian Quantile Regression for Ordinal Models.â Bayesian Analysis, 11(1): 1-24 <doi: 10.1214/15-BA939>. Yu, K., and Moyeed, R. A. (2001). â Bayesian Quantile Regression.â Statistics and Probability Letters, 54(4): 437â 447 <doi: 10.1016/S0167-7152(01)00124-9>. Koenker, R., and Bassett, G. (1978).â Regression Quantiles.â Econometrica, 46(1): 33-50 <doi: 10.2307/1913643>. Chib, S. (1995). â Marginal likelihood from the Gibbs output.â Journal of the American Statistical Association, 90(432):1313â 1321, 1995. <doi: 10.1080/01621459.1995.10476635>. Chib, S., and Jeliazkov, I. (2001). â Marginal likelihood from the Metropolis-Hastings output.â Journal of the American Statistical Association, 96(453):270â 281, 2001. <doi: 10.1198/016214501750332848>.
Approximates best-subset selection (L0) regression with an iteratively adaptive Ridge (L2) penalty for large-scale models. This package uses Cyclops for an efficient implementation and the iterative method is described in Kawaguchi et al (2020) <doi:10.1002/sim.8438> and Li et al (2021) <doi:10.1016/j.jspi.2020.12.001>.
Calculates several entropy metrics for spatial data inspired by Boltzmann's entropy formula. It includes metrics introduced by Cushman for landscape mosaics (Cushman (2015) <doi:10.1007/s10980-015-0305-2>), and landscape gradients and point patterns (Cushman (2021) <doi:10.3390/e23121616>); by Zhao and Zhang for landscape mosaics (Zhao and Zhang (2019) <doi:10.1007/s10980-019-00876-x>); and by Gao et al. for landscape gradients (Gao et al. (2018) <doi:10.1111/tgis.12315>; Gao and Li (2019) <doi:10.1007/s10980-019-00854-3>).
Nonparametric detection of nonuniformity and dependence with Binary Expansion Testing (BET). See Kai Zhang (2019) BET on Independence, Journal of the American Statistical Association, 114:528, 1620-1637, <DOI:10.1080/01621459.2018.1537921>, Kai Zhang, Wan Zhang, Zhigen Zhao, Wen Zhou. (2023). BEAUTY Powered BEAST, <doi:10.48550/arXiv.2103.00674> and Wan Zhang, Zhigen Zhao, Michael Baiocchi, Yao Li, Kai Zhang. (2023) SorBET: A Fast and Powerful Algorithm to Test Dependence of Variables, Techinical report.
Complex machine learning models are often difficult to interpret. Shapley values serve as a powerful tool to understand and explain why a model makes a particular prediction. This package computes variable contributions using permutation-based Shapley values for Bayesian Additive Regression Trees (BART) and its extension with Post-Stratification (BARP). The permutation-based SHAP method proposed by Strumbel and Kononenko (2014) <doi:10.1007/s10115-013-0679-x> is grounded in data obtained via MCMC sampling. Similar to the BART model introduced by Chipman, George, and McCulloch (2010) <doi:10.1214/09-AOAS285>, this package leverages Bayesian posterior samples generated during model estimation, allowing variable contributions to be computed without requiring additional sampling. The BART model is designed to work with the following R packages: BART <doi:10.18637/jss.v097.i01>, bartMachine <doi:10.18637/jss.v070.i04>, and dbarts <https://CRAN.R-project.org/package=dbarts>. For XGBoost and baseline adjustments, the approach by Lundberg et al. (2020) <doi:10.1038/s42256-019-0138-9> is also considered. The BARP model proposed by Bisbee (2019) <doi:10.1017/S0003055419000480> was implemented with reference to <https://github.com/jbisbee1/BARP> and is designed to work with modified functions based on that implementation. BARP extends post-stratification by computing variable contributions within each stratum defined by stratifying variables. The resulting Shapley values are visualized through both global and local explanation methods.
This package creates an interactive graphics interface to visualize backtest results of different financial instruments, such as equities, futures, and credit default swaps. The package does not run backtests on the given data set but displays a graphical explanation of the backtest results. Users can look at backtest graphics for different instruments, investment strategies, and portfolios. Summary statistics of different portfolio holdings are shown in the left panel, and interactive plots of profit and loss (P&L), net market value (NMV) and gross market value (GMV) are displayed in the right panel.
This package contains tools for survey statistics (especially in educational assessment) for datasets with replication designs (jackknife, bootstrap, replicate weights; see Kolenikov, 2010; Pfefferman & Rao, 2009a, 2009b, <doi:10.1016/S0169-7161(09)70003-3>, <doi:10.1016/S0169-7161(09)70037-9>); Shao, 1996, <doi:10.1080/02331889708802523>). Descriptive statistics, linear and logistic regression, path models for manifest variables with measurement error correction and two-level hierarchical regressions for weighted samples are included. Statistical inference can be conducted for multiply imputed datasets and nested multiply imputed datasets and is in particularly suited for the analysis of plausible values (for details see George, Oberwimmer & Itzlinger-Bruneforth, 2016; Bruneforth, Oberwimmer & Robitzsch, 2016; Robitzsch, Pham & Yanagida, 2016). The package development was supported by BIFIE (Federal Institute for Educational Research, Innovation and Development of the Austrian School System; Salzburg, Austria).
An implementation of Bayesian survival models with graph-structured selection priors for sparse identification of omics features predictive of survival (Madjar et al., 2021 <doi:10.1186/s12859-021-04483-z>) and its extension to use a fixed graph via a Markov Random Field (MRF) prior for capturing known structure of omics features, e.g. disease-specific pathways from the Kyoto Encyclopedia of Genes and Genomes database (Hermansen et al., 2025 <doi:10.48550/arXiv.2503.13078>).
This package provides a GUI with which the user can construct and interact with Bootstrap methods on Classical Biplots and with Clustering and/or Disjoint Biplot. This GUI is also aimed for estimate any numerical data matrix using the Clustering and Disjoint Principal component (CDPCA) methodology.
Set of functions to calculate Benthic Biotic Indices from composition data, obtained whether from morphotaxonomic inventories or sequencing data. Based on reference ecological weights publicly available for a set of commonly used marine biotic indices, such as AMBI (A Marine Biotic Index, Borja et al., 2000) <doi:10.1016/S0025-326X(00)00061-8> NSI (Norwegian Sensitivity Index) and ISI (Indicator Species Index) (Rygg 2013, <ISBN:978-82-577-6210-0>). It provides the ecological quality status of the samples based on each BBI as well as the normalized Ecological Quality Ratio.
This package implements Bayesian Distribution Regression methods. This package contains functions for three estimators (non-asymptotic, semi-asymptotic and asymptotic) and related routines for Bayesian Distribution Regression in Huang and Tsyawo (2018) <doi:10.2139/ssrn.3048658> which is also the recommended reference to cite for this package. The functions can be grouped into three (3) categories. The first computes the logit likelihood function and posterior densities under uniform and normal priors. The second contains Independence and Random Walk Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithms as functions and the third category of functions are useful for semi-asymptotic and asymptotic Bayesian distribution regression inference.
Bayesian power/type I error calculation and model fitting using the power prior and the normalized power prior for generalized linear models. Detailed examples of applying the package are available at <doi:10.32614/RJ-2023-016>. Models for time-to-event outcomes are implemented in the R package BayesPPDSurv'. The Bayesian clinical trial design methodology is described in Chen et al. (2011) <doi:10.1111/j.1541-0420.2011.01561.x>, and Psioda and Ibrahim (2019) <doi:10.1093/biostatistics/kxy009>. The normalized power prior is described in Duan et al. (2006) <doi:10.1002/env.752> and Ibrahim et al. (2015) <doi:10.1002/sim.6728>.
Graphical User Interface (via the R-Commander) and utility functions (often based on the vegan package) for statistical analysis of biodiversity and ecological communities, including species accumulation curves, diversity indices, Renyi profiles, GLMs for analysis of species abundance and presence-absence, distance matrices, Mantel tests, and cluster, constrained and unconstrained ordination analysis. A book on biodiversity and community ecology analysis is available for free download from the website. In 2012, methods for (ensemble) suitability modelling and mapping were expanded in the package.
This package provides functions to scrape IQY calls to Bank of Mexico, downloading and ordering the data conveniently.
Species Distribution Modeling (SDM) is a practical methodology that aims to estimate the area of distribution of a species. However, most of the work has focused on estimating static expressions of the correlation between environmental variables. The outputs of correlative species distribution models can be interpreted as maps of the suitable environment for a species but not generally as maps of its actual distribution. Soberón and Peterson (2005) <doi:10.17161/bi.v2i0.4> presented the BAM scheme, a heuristic framework that states that the occupied area of a species occurs on sites that have been accessible through dispersal (M) and have both favorable biotic (B) and abiotic conditions (A). The bamm package implements classes and functions to operate on each element of the BAM and by using a cellular automata model where the occupied area of a species at time t is estimated by the multiplication of three binary matrices: one matrix represents movements (M), another abiotic -niche- tolerances (A), and a third, biotic interactions (B). The theoretical background of the package can be found in Soberón and Osorio-Olvera (2023) <doi:10.1111/jbi.14587>.
Understanding the drivers of microbial diversity is an important frontier of microbial ecology, and investigating the diversity of samples from microbial ecosystems is a common step in any microbiome analysis. breakaway is the premier package for statistical analysis of microbial diversity. breakaway implements the latest and greatest estimates of species richness, described in Willis and Bunge (2015) <doi:10.1111/biom.12332>, Willis et al. (2017) <doi:10.1111/rssc.12206>, and Willis (2016) <arXiv:1604.02598>, as well as the most commonly used estimates, including the objective Bayes approach described in Barger and Bunge (2010) <doi:10.1214/10-BA527>.
R functions for "The Basics of Item Response Theory Using R" by Frank B. Baker and Seock-Ho Kim (Springer, 2017, ISBN-13: 978-3-319-54204-1) including iccplot(), icccal(), icc(), iccfit(), groupinv(), tcc(), ability(), tif(), and rasch(). For example, iccplot() plots an item characteristic curve under the two-parameter logistic model.
This package provides a set of tools for performing graph theory analysis of brain MRI data. It works with data from a Freesurfer analysis (cortical thickness, volumes, local gyrification index, surface area), diffusion tensor tractography data (e.g., from FSL) and resting-state fMRI data (e.g., from DPABI). It contains a graphical user interface for graph visualization and data exploration, along with several functions for generating useful figures.
Binford's hunter-gatherer data includes more than 200 variables coding aspects of hunter-gatherer subsistence, mobility, and social organization for 339 ethnographically documented groups of hunter-gatherers.
The BACCO bundle of packages is replaced by the BACCO package, which provides a vignette that illustrates the constituent packages (emulator, approximator, calibrator) in use.
This package provides functions for training an optimal decision tree classifier, making predictions and generating latex code for plotting. Works for two-class and multi-class classification problems. The algorithm seeks the optimal Boolean rule consisting of multiple variables to split a node, resulting in shorter trees. Use bsnsing() to build a tree, predict() to make predictions and plot() to plot the tree into latex and PDF. See Yanchao Liu (2022) <arXiv:2205.15263> for technical details. Source code and more data sets are at <https://github.com/profyliu/bsnsing/>.
We utilize the Bradley-Terry Model to estimate the abilities of teams using paired comparison data. For dynamic approximation of current rankings, we employ the Exponential Decayed Log-likelihood function, and we also apply the Lasso penalty for variance reduction and grouping. The main algorithm applies the Augmented Lagrangian Method described by Masarotto and Varin (2012) <doi:10.1214/12-AOAS581>.
Code for backShift', an algorithm to estimate the connectivity matrix of a directed (possibly cyclic) graph with hidden variables. The underlying system is required to be linear and we assume that observations under different shift interventions are available. For more details, see <arXiv:1506.02494>.
Collection of functions, data sets and code examples for evaluations of field trials with the objective of equivalence assessment.