This software solves an Advection Bi-Flux Diffusive Problem using the Finite Difference Method FDM. Vasconcellos, J.F.V., Marinho, G.M., Zanni, J.H., 2016, Numerical analysis of an anomalous diffusion with a bimodal flux distribution. <doi:10.1016/j.rimni.2016.05.001>. Silva, L.G., Knupp, D.C., Bevilacqua, L., Galeao, A.C.N.R., Silva Neto, A.J., 2014, Formulation and solution of an Inverse Anomalous Diffusion Problem with Stochastic Techniques. <doi:10.5902/2179460X13184>. In this version, it is possible to include a source as a function depending on space and time, that is, s(x,t).
This R package applies the probabilistic model of species co-occurrence (Veech 2013) to a set of species distributed among a set of survey or sampling sites. The algorithm calculates the observed and expected frequencies of co-occurrence between each pair of species. The expected frequency is based on the distribution of each species being random and independent of the other species. The analysis returns the probabilities that a more extreme (either low or high) value of co-occurrence could have been obtained by chance. The package also includes functions for visualizing species co-occurrence results and preparing data for downstream analyses.
Imports PxStat
data in JSON-stat format and (optionally) reshapes it into wide format. The Central Statistics Office (CSO) is the national statistical institute of Ireland and PxStat
is the CSOs online database of Official Statistics. This database contains current and historical data series compiled from CSO statistical releases and is accessed at <http://data.cso.ie>. The CSO PxStat
Application Programming Interface (API), which is accessed in this package, provides access to PxStat
data in JSON-stat format at <http://data.cso.ie>. This dissemination tool allows developers machine to machine access to CSO PxStat
data.
Compares the fit of alternative models of continuous trait differentiation between sister species and other paired lineages. Differences in trait means between two lineages arise as they diverge from a common ancestor, and alternative processes of evolutionary divergence are expected to leave unique signatures in the distribution of trait differentiation in datasets comprised of many lineage pairs. Models include approximations of divergent selection, drift, and stabilizing selection. A variety of model extensions facilitate the testing of process-to-pattern hypotheses. Users supply trait data and divergence times for each lineage pair. The fit of alternative models is compared in a likelihood framework.
Designed for genomic and proteomic data analysis, enabling unbiased PubMed
searching, protein interaction network visualization, and comprehensive data summarization. This package aims to help users identify novel targets within their data sets based on protein network interactions and publication precedence of target's association with research context based on literature precedence. Methods in this package are described in detail in: Douglas (Year) <to-be-added DOI or link to the preprint>. Key functionalities of this package also leverage methodologies from previous works, such as: - Szklarczyk et al. (2023) <doi:10.1093/nar/gkac1000> - Winter (2017) <doi:10.32614/RJ-2017-066>.
This package implements fast change point detection algorithm based on the paper "Sequential Gradient Descent and Quasi-Newton's Method for Change-Point Analysis" by Xianyang Zhang, Trisha Dawn <https://proceedings.mlr.press/v206/zhang23b.html>. The algorithm is based on dynamic programming with pruning and sequential gradient descent. It is able to detect change points a magnitude faster than the vanilla Pruned Exact Linear Time(PELT). The package includes examples of linear regression, logistic regression, Poisson regression, penalized linear regression data, and whole lot more examples with custom cost function in case the user wants to use their own cost function.
Based on the work of Curi, Converse, Hajewski, and Oliveira (2019) <doi:10.1109/IJCNN.2019.8852333>. This package provides easy-to-use functions which create a variational autoencoder (VAE) to be used for parameter estimation in Item Response Theory (IRT) - namely the Multidimensional Logistic 2-Parameter (ML2P) model. To use a neural network as such, nontrivial modifications to the architecture must be made, such as restricting the nonzero weights in the decoder according to some binary matrix Q. The functions in this package allow for straight-forward construction, training, and evaluation so that minimal knowledge of tensorflow or keras is required.
When using pooled p-values to adjust for multiple testing, there is an inherent balance that must be struck between rejection based on weak evidence spread among many tests and strong evidence in a few, explored in Salahub and Olford (2023) <arXiv:2310.16600>
. This package provides functionality to compute marginal and central rejection levels and the centrality quotient for p-value pooling functions and provides implementations of the chi-squared quantile pooled p-value (described in Salahub and Oldford (2023)) and a proposal from Heard and Rubin-Delanchy (2018) <doi:10.1093/biomet/asx076> to control the quotient's value.
Pipeline for Statistical Inference of Associations between Microbial Communities And host phenoTypes
(SIAMCAT). A primary goal of analyzing microbiome data is to determine changes in community composition that are associated with environmental factors. In particular, linking human microbiome composition to host phenotypes such as diseases has become an area of intense research. For this, robust statistical modeling and biomarker extraction toolkits are crucially needed. SIAMCAT provides a full pipeline supporting data preprocessing, statistical association testing, statistical modeling (LASSO logistic regression) including tools for evaluation and interpretation of these models (such as cross validation, parameter selection, ROC analysis and diagnostic model plots).
Extracts sentiment and sentiment-derived plot arcs from text using a variety of sentiment dictionaries conveniently packaged for consumption by R users. Implemented dictionaries include syuzhet (default) developed in the Nebraska Literary Lab, afinn developed by Finn Arup Nielsen, bing developed by Minqing Hu and Bing Liu, and nrc developed by Mohammad, Saif M. and Turney, Peter D. Applicable references are available in README.md
and in the documentation for the get_sentiment
function. The package also provides a hack for implementing Stanford's coreNLP sentiment parser. The package provides several methods for plot arc normalization.
R7RS-small Scheme library for reading and writing RSV data format, a very simple binary format for storing tables of strings. It is a competitor for CSV (Comma Separated Values) and TSV (Tab Separated Values). Its main benefit is that the strings are represented as Unicode encoded as UTF-8, and the value and row separators are byte values that are never used in UTF-8, so the strings do not need any error prone escaping and thus can be written and read verbatim.
The RSV format is specified in https://github.com/Stenway/RSV-Specification.
This is a analysis toolkit to streamline the analyses of minicircle sequence diversity in population-scale genome projects. rKOMICS
is a user-friendly R package that has simple installation requirements and that is applicable to all 27 trypanosomatid genera. Once minicircle sequence alignments are generated, rKOMICS
allows to examine, summarize and visualize minicircle sequence diversity within and between samples through the analyses of minicircle sequence clusters. We showcase the functionalities of the (r)KOMICS tool suite using a whole-genome sequencing dataset from a recently published study on the history of diversification of the Leishmania braziliensis species complex in Peru. Analyses of population diversity and structure highlighted differences in minicircle sequence richness and composition between Leishmania subspecies, and between subpopulations within subspecies. The rKOMICS
package establishes a critical framework to manipulate, explore and extract biologically relevant information from mitochondrial minicircle assemblies in tens to hundreds of samples simultaneously and efficiently. This should facilitate research that aims to develop new molecular markers for identifying species-specific minicircles, or to study the ancestry of parasites for complementary insights into their evolutionary history. ***** !! WARNING: this package relies on dependencies from Bioconductor. For Mac users, this can generate errors when installing rKOMICS
. Install Bioconductor and ComplexHeatmap
at advance: install.packages("BiocManager
"); BiocManager::install("ComplexHeatmap
") *****.
Some functions for drawing some special plots: The function bagplot plots a bagplot, faces plots chernoff faces, iconplot plots a representation of a frequency table or a data matrix, plothulls plots hulls of a bivariate data set, plotsummary plots a graphical summary of a data set, puticon adds icons to a plot, skyline.hist combines several histograms of a one dimensional data set in one plot, slider functions supports some interactive graphics, spin3R helps an inspection of a 3-dim point cloud, stem.leaf plots a stem and leaf plot, stem.leaf.backback plots back-to-back versions of stem and leaf plot.
This package implements a wide range of model-based dose escalation designs, ranging from classical and modern continual reassessment methods (CRMs) based on dose-limiting toxicity endpoints to dual-endpoint designs taking into account a biomarker/efficacy outcome. The focus is on Bayesian inference, making it very easy to setup a new design with its own JAGS code. However, it is also possible to implement 3+3 designs for comparison or models with non-Bayesian estimation. The whole package is written in a modular form in the S4 class system, making it very flexible for adaptation to new models, escalation or stopping rules.
Simulation of segments shared identical-by-descent (IBD) by pedigree members. Using sex specific recombination rates along the human genome (Halldorsson et al. (2019) <doi:10.1126/science.aau1043>), phased chromosomes are simulated for all pedigree members. Applications include calculation of realised relatedness coefficients and IBD segment distributions. ibdsim2 is part of the pedsuite collection of packages for pedigree analysis. A detailed presentation of the pedsuite', including a separate chapter on ibdsim2', is available in the book Pedigree analysis in R (Vigeland, 2021, ISBN:9780128244302). A Shiny app for visualising and comparing IBD distributions is available at <https://magnusdv.shinyapps.io/ibdsim2-shiny/>.
This package implements Self-Validated Ensemble Models (SVEM, Lemkus et al. (2021) <doi:10.1016/j.chemolab.2021.104439>) using Elastic Net regression via glmnet (Friedman et al. <doi:10.18637/jss.v033.i01>). SVEM averages predictions from multiple models fitted to fractionally weighted bootstraps of the data, tuned with anti-correlated validation weights. Also implements the randomized permutation whole model test for SVEM (Karl (2024) <doi:10.1016/j.chemolab.2024.105122>). \\Code for the whole model test was taken from the supplementary material of Karl (2024). Development of this package was assisted by GPT o1-preview for code structure and documentation.
Social Relation Model (SRM) analyses for single or multiple round-robin groups are performed. These analyses are either based on one manifest variable, one latent construct measured by two manifest variables, two manifest variables and their bivariate relations, or two latent constructs each measured by two manifest variables. Within-group t-tests for variance components and covariances are provided for single groups. For multiple groups two types of significance tests are provided: between-groups t-tests (as in SOREMO) and enhanced standard errors based on Lashley and Bond (1997) <DOI:10.1037/1082-989X.2.3.278>. Handling for missing values is provided.
Model data with a suspected clustering structure (either in co-variate space, regression space or both) using a Bayesian product model with a logistic regression likelihood. Observations are represented graphically and clusters are formed through various edge removals or additions. Cluster quality is assessed through the log Bayesian evidence of the overall model, which is estimated using either a Sequential Monte Carlo sampler or a suitable transformation of the Bayesian Information Criterion as a fast approximation of the former. The internal Iterated Batch Importance Sampling scheme (Chopin (2002 <doi:10.1093/biomet/89.3.539>)) is made available as a free standing function.
Facilitates use and analysis of data about the armed conflict in Colombia resulting from the joint project between La Jurisdicción Especial para la Paz (JEP), La Comisión para el Esclarecimiento de la Verdad, la Convivencia y la No repetición (CEV), and the Human Rights Data Analysis Group (HRDAG). The data are 100 replicates from a multiple imputation through chained equations as described in Van Buuren and Groothuis-Oudshoorn (2011) <doi:10.18637/jss.v045.i03>. With the replicates the user can examine four human rights violations that occurred in the Colombian conflict accounting for the impact of missing fields and fully missing observations.
MBttest method was developed from beta t-test method of Baggerly et al(2003). Compared to baySeq
(Hard castle and Kelly 2010), DESeq (Anders and Huber 2010) and exact test (Robinson and Smyth 2007, 2008) and the GLM of McCarthy
et al(2012), MBttest is of high work efficiency,that is, it has high power, high conservativeness of FDR estimation and high stability. MBttest is suit- able to transcriptomic data, tag data, SAGE data (count data) from small samples or a few replicate libraries. It can be used to identify genes, mRNA
isoforms or tags differentially expressed between two conditions.
In genomics, differential analysis enables the discovery of groups of genes implicating important biological processes such as cell differentiation and aging. Non-parametric tests of differential gene expression usually detect shifts in centrality (such as mean or median), and therefore suffer from diminished power against alternative hypotheses characterized by shifts in spread (such as variance). This package provides a flexible family of non-parametric two-sample tests and K-sample tests, which is based on theoretical work around non-parametric tests, spacing statistics and local asymptotic normality (Erdmann-Pham et al., 2022+ [arXiv:2008.06664v2
]; Erdmann-Pham, 2023+ [arXiv:2209.14235v2
]).
This package implements fast, exact bootstrap Principal Component Analysis and Singular Value Decompositions for high dimensional data, as described in <doi:10.1080/01621459.2015.1062383> (see also <arXiv:1405.0922>
). For data matrices that are too large to operate on in memory, users can input objects with class ff (see the ff package), where the actual data is stored on disk. In response, this package will implement a block matrix algebra procedure for calculating the principal components (PCs) and bootstrap PCs. Depending on options set by the user, the parallel package can be used to parallelize the calculation of the bootstrap PCs.
Fetches zonal statistics from weather indicators that were calculated for each municipality in Brazil using data from the BR-DWGD and TerraClimate
projects. Zonal statistics such as mean, maximum, minimum, standard deviation, and sum were computed by taking into account the data cells that intersect the boundaries of each municipality and stored in Parquet files. This procedure was carried out for all Brazilian municipalities, and for all available dates, for every indicator available in the weather products (BR-DWGD and TerraClimate
projects). This package queries on-line the already calculated statistics on the Parquet files and returns easy-to-use data.frames.
This package provides a user friendly function crrcbcv to compute bias-corrected variances for competing risks regression models using proportional subdistribution hazards with small-sample clustered data. Four types of bias correction are included: the MD-type bias correction by Mancl and DeRouen
(2001) <doi:10.1111/j.0006-341X.2001.00126.x>, the KC-type bias correction by Kauermann and Carroll (2001) <doi:10.1198/016214501753382309>, the FG-type bias correction by Fay and Graubard (2001) <doi:10.1111/j.0006-341X.2001.01198.x>, and the MBN-type bias correction by Morel, Bokossa, and Neerchal (2003) <doi:10.1002/bimj.200390021>.