Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
R bindings for the various functions and statistical distributions provided by the Boost Math library <https://www.boost.org/doc/libs/latest/libs/math/doc/html/index.html>.
This package provides functions to aid in the design and analysis of agronomic and agricultural experiments through easy access to documentation and helper functions, especially for users who are learning these concepts. While not required for most functionality, this package enhances the `asreml` package which provides a computationally efficient algorithm for fitting mixed models using Residual Maximum Likelihood. It is a commercial package that can be purchased as asreml-R from VSNi <https://vsni.co.uk/>, who will supply a zip file for local installation/updating (see <https://asreml.kb.vsni.co.uk/>).
Write blog posts and web pages in R Markdown. This package supports the static site generator Hugo (<https://gohugo.io>) best, and it also supports Jekyll (<https://jekyllrb.com>) and Hexo (<https://hexo.io>).
Smoothed lexis diagrams with Bayesian method specifically tailored to cancer incidence data. Providing to calculating slope and constructing credible interval. LC Chien et al. (2015) <doi:10.1080/01621459.2015.1042106>. LH Chien et al. (2017) <doi:10.1002/cam4.1102>.
This package provides functions that allow users to quantify the relative contributions of geographic and ecological distances to empirical patterns of genetic differentiation on a landscape. Specifically, we use a custom Markov chain Monte Carlo (MCMC) algorithm, which is used to estimate the parameters of the inference model, as well as functions for performing MCMC diagnosis and assessing model adequacy.
This package provides methods for the group testing identification problem: 1) Operating characteristics (e.g., expected number of tests) for commonly used hierarchical and array-based algorithms, and 2) Optimal testing configurations for these same algorithms. Methods for the group testing estimation problem: 1) Estimation and inference procedures for an overall prevalence, and 2) Regression modeling for commonly used hierarchical and array-based algorithms.
Is used to simulate and fit biological geometries. biogeom incorporates several novel universal parametric equations that can generate the profiles of bird eggs, flowers, linear and lanceolate leaves, seeds, starfish, and tree-rings (Gielis (2003) <doi:10.3732/ajb.90.3.333>; Shi et al. (2020) <doi:10.3390/sym12040645>), three growth-rate curves representing the ontogenetic growth trajectories of animals and plants against time, and the axially symmetrical and integral forms of all these functions (Shi et al. (2017) <doi:10.1016/j.ecolmodel.2017.01.012>; Shi et al. (2021) <doi:10.3390/sym13081524>). The optimization method proposed by Nelder and Mead (1965) <doi:10.1093/comjnl/7.4.308> was used to estimate model parameters. biogeom includes several real data sets of the boundary coordinates of natural shapes, including avian eggs, fruit, lanceolate and ovate leaves, tree rings, seeds, and sea stars,and can be potentially applied to other natural shapes. biogeom can quantify the conspecific or interspecific similarity of natural outlines, and provides information with important ecological and evolutionary implications for the growth and form of living organisms. Please see Shi et al. (2022) <doi:10.1111/nyas.14862> for details.
This package provides methods for choosing the rank of an SVD (singular value decomposition) approximation via cross validation. The package provides both Gabriel-style "block" holdouts and Wold-style "speckled" holdouts. It also includes an implementation of the SVDImpute algorithm. For more information about Bi-cross-validation, see Owen & Perry's 2009 AoAS article (at <arXiv:0908.2062>) and Perry's 2009 PhD thesis (at <arXiv:0909.3052>).
This package provides a client for cryptocurrency exchange BitMEX <https://www.bitmex.com/> including the ability to obtain historic trade data and place, edit and cancel orders. BitMEX's Testnet and live API are both supported.
Inflammation can affect many micronutrient biomarkers and can thus lead to incorrect diagnosis of individuals and to over- or under-estimate the prevalence of deficiency in a population. Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) is a multi-agency and multi-country partnership designed to improve the interpretation of nutrient biomarkers in settings of inflammation and to generate context-specific estimates of risk factors for anemia (Suchdev (2016) <doi:10.3945/an.115.010215>). In the past few years, BRINDA published a series of papers to provide guidance on how to adjust micronutrient biomarkers, retinol binding protein, serum retinol, serum ferritin by Namaste (2020), soluble transferrin receptor (sTfR), serum zinc, serum and Red Blood Cell (RBC) folate, and serum B-12, using inflammation markers, alpha-1-acid glycoprotein (AGP) and/or C-Reactive Protein (CRP) by Namaste (2020) <doi:10.1093/ajcn/nqaa141>, Rohner (2017) <doi:10.3945/ajcn.116.142232>, McDonald (2020) <doi:10.1093/ajcn/nqz304>, and Young (2020) <doi:10.1093/ajcn/nqz303>. The BRINDA inflammation adjustment method mainly focuses on Women of Reproductive Age (WRA) and Preschool-age Children (PSC); however, the general principle of the BRINDA method might apply to other population groups. The BRINDA R package is a user-friendly all-in-one R package that uses a series of functions to implement BRINDA adjustment method, as described above. The BRINDA R package will first carry out rigorous checks and provides users guidance to correct data or input errors (if they occur) prior to inflammation adjustments. After no errors are detected, the package implements the BRINDA inflammation adjustment for up to five micronutrient biomarkers, namely retinol-binding-protein, serum retinol, serum ferritin, sTfR, and serum zinc (when appropriate), using inflammation indicators of AGP and/or CRP for various population groups. Of note, adjustment for serum and RBC folate and serum B-12 is not included in the R package, since evidence shows that no adjustment is needed for these micronutrient biomarkers in either WRA or PSC groups (Young (2020) <doi:10.1093/ajcn/nqz303>).
This package provides a complete toolkit for connecting R environments with Large Language Models (LLMs). Provides utilities for describing R objects, package documentation, and workspace state in plain text formats optimized for LLM consumption. Supports multiple workflows: interactive copy-paste to external chat interfaces, programmatic tool registration with ellmer chat clients, batteries-included chat applications via shinychat', and exposure to external coding agents through the Model Context Protocol. Project configuration files enable stable, repeatable conversations with project-specific context and preferred LLM settings.
Estimate population average treatment effects from a primary data source with borrowing from supplemental sources. Causal estimation is done with either a Bayesian linear model or with Bayesian additive regression trees (BART) to adjust for confounding. Borrowing is done with multisource exchangeability models (MEMs). For information on BART, see Chipman, George, & McCulloch (2010) <doi:10.1214/09-AOAS285>. For information on MEMs, see Kaizer, Koopmeiners, & Hobbs (2018) <doi:10.1093/biostatistics/kxx031>.
An implementation of Jon Kleinberg's burst detection algorithm (Kleinberg (2003) <doi:10.1023/A:1024940629314>). Uses an infinite Markov model to detect periods of increased activity in a series of discrete events with known times, and provides a simple visualization of the results.
This package contains functions for bias-Corrected Forecasting and Bootstrap Prediction Intervals for Autoregressive Time Series.
Prognostic Enrichment is a clinical trial strategy of evaluating an intervention in a patient population with a higher rate of the unwanted event than the broader patient population (R. Temple (2010) <DOI:10.1038/clpt.2010.233>). A higher event rate translates to a lower sample size for the clinical trial, which can have both practical and ethical advantages. This package is a tool to help evaluate biomarkers for prognostic enrichment of clinical trials.
Regression for data too large to fit in memory. This package functions exactly like the biglm package, but works with later versions of R.
This package provides a backward-pipe operator for magrittr (%<%) or pipeR (%<<%) that allows for a performing operations from right-to-left. This allows writing more legible code where right-to-left ordering is natural. This is common with hierarchies and nested structures such as trees, directories or markup languages (e.g. HTML and XML). The package also includes a R-Studio add-in that can be bound to a keyboard shortcut.
Bell regression models for count data with overdispersion. The implemented models account for ordinary and zero-inflated regression models under both frequentist and Bayesian approaches. Theoretical details regarding the models implemented in the package can be found in Castellares et al. (2018) <doi:10.1016/j.apm.2017.12.014> and Lemonte et al. (2020) <doi:10.1080/02664763.2019.1636940>.
This package contains tools to fit both predictive and prognostic biomarker effects using biomarker threshold models and continuous threshold models. Evaluate the treatment effect, biomarker effect and treatment-biomarker interaction using probability index measurement. Test for treatment-biomarker interaction using residual bootstrap method.
This package provides the functions for Brunner-Munzel test and permuted Brunner-Munzel test, which enable to use formula, matrix, and table as argument. These functions are based on Brunner and Munzel (2000) <doi:10.1002/(SICI)1521-4036(200001)42:1%3C17::AID-BIMJ17%3E3.0.CO;2-U> and Neubert and Brunner (2007) <doi:10.1016/j.csda.2006.05.024>, and are written with FORTRAN.
Fit Bayesian Gaussian graphical models. The methods are separated into two Bayesian approaches for inference: hypothesis testing and estimation. There are extensions for confirmatory hypothesis testing, comparing Gaussian graphical models, and node wise predictability. These methods were recently introduced in the Gaussian graphical model literature, including Williams (2019) <doi:10.31234/osf.io/x8dpr>, Williams and Mulder (2019) <doi:10.31234/osf.io/ypxd8>, Williams, Rast, Pericchi, and Mulder (2019) <doi:10.31234/osf.io/yt386>.
Utilities for Bratteli graphs. A tree is an example of a Bratteli graph. The package provides a function which generates a LaTeX file that renders the given Bratteli graph. It also provides functions to compute the dimensions of the vertices, the intrinsic kernels and the intrinsic distances. Intrinsic kernels and distances were introduced by Vershik (2014) <doi:10.1007/s10958-014-1958-0>.
This package provides functions to produce MCMC samples for posterior inference in semiparametric Bayesian discrete time competing risks recurrent events models and multistate models.
This package provides a system to facilitate brand identity management using the brand.yml standard, providing functions to consistently access and apply brand colors, typography, and other visual elements across your R projects.