Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimate population average treatment effects from a primary data source with borrowing from supplemental sources. Causal estimation is done with either a Bayesian linear model or with Bayesian additive regression trees (BART) to adjust for confounding. Borrowing is done with multisource exchangeability models (MEMs). For information on BART, see Chipman, George, & McCulloch (2010) <doi:10.1214/09-AOAS285>. For information on MEMs, see Kaizer, Koopmeiners, & Hobbs (2018) <doi:10.1093/biostatistics/kxx031>.
This package implements functions to update Bayesian Predictive Power Computations after not stopping a clinical trial at an interim analysis. Such an interim analysis can either be blinded or unblinded. Code is provided for Normally distributed endpoints with known variance, with a prominent example being the hazard ratio.
This package provides tools to visualize ordination results in R by adding covariance-based ellipses, centroids, vectors, and confidence regions to plots created with ggplot2'. The package extends the vegan framework and supports Principal Component Analysis (PCA), Redundancy Analysis (RDA), and Non-metric Multidimensional Scaling (NMDS). Ellipses can represent either group dispersion (standard deviation, SD) or centroid precision (standard error, SE), following Wang et al. (2015) <doi:10.1371/journal.pone.0118537>. Robust estimators of covariance are implemented, including the Minimum Covariance Determinant (MCD) method of Hubert et al. (2018) <doi:10.1002/wics.1421>. This approach reduces the influence of outliers. barrel is particularly useful for multivariate ecological datasets, promoting reproducible, publication-quality ordination graphics with minimal effort.
Bindings to badgen <https://www.npmjs.com/package/badgen> to generate beautiful svg badges in R without internet access. Images can be converted to png using the rsvg package as shown in examples.
This package provides the facility to calculate the Brainerd-Robinson similarity coefficient for the rows of an input table, and to calculate the significance of each coefficient based on a permutation approach; a heatmap is produced to visually represent the similarity matrix. Optionally, hierarchical agglomerative clustering can be performed and the silhouette method is used to identify an optimal number of clusters; the results of the clustering can be optionally used to sort the heatmap.
This package contains data and code to accompany the book P. Zuccolotto and M. Manisera (2020) Basketball Data Science. Applications with R. CRC Press. ISBN 9781138600799.
Estimating the average causal effect based on the Bayesian Adjustment for Confounding (BAC) algorithm.
This package implements Bayesian dynamic factor analysis with Stan'. Dynamic factor analysis is a dimension reduction tool for multivariate time series. bayesdfa extends conventional dynamic factor models in several ways. First, extreme events may be estimated in the latent trend by modeling process error with a student-t distribution. Second, alternative constraints (including proportions are allowed). Third, the estimated dynamic factors can be analyzed with hidden Markov models to evaluate support for latent regimes.
Defines operating characteristics of Bayesian Adaptive Trials considering a generalised linear model response via Monte Carlo simulations of Bayesian GLM fitted via integrated Laplace approximations (INLA).
Enables a user to consume the BambooHR API endpoints using R. The actual URL of the API will depend on your company domain, and will be handled by the package automatically once you setup the config file. The API documentation can be found here <https://documentation.bamboohr.com/docs>.
This package performs a spatial Bayesian general linear model (GLM) for task functional magnetic resonance imaging (fMRI) data on the cortical surface. Additional models include group analysis and inference to detect thresholded areas of activation. Includes direct support for the CIFTI neuroimaging file format. For more information see A. F. Mejia, Y. R. Yue, D. Bolin, F. Lindgren, M. A. Lindquist (2020) <doi:10.1080/01621459.2019.1611582> and D. Spencer, Y. R. Yue, D. Bolin, S. Ryan, A. F. Mejia (2022) <doi:10.1016/j.neuroimage.2022.118908>.
This package provides functions for the Bayesian analysis of some simple commonly-used models, without using Markov Chain Monte Carlo (MCMC) methods such as Gibbs sampling. The rust package <https://cran.r-project.org/package=rust> is used to simulate a random sample from the required posterior distribution, using the generalized ratio-of-uniforms method. See Wakefield, Gelfand and Smith (1991) <DOI:10.1007/BF01889987> for details. At the moment three conjugate hierarchical models are available: beta-binomial, gamma-Poisson and a 1-way analysis of variance (ANOVA).
This package contains functions for bias-Corrected Forecasting and Bootstrap Prediction Intervals for Autoregressive Time Series.
This package provides a collection of functions allowing to derive the posterior distribution of the model parameters in random-effects meta-analysis or meta-regression, and providing functionality to evaluate joint and marginal posterior probability distributions, predictive distributions, shrinkage effects, posterior predictive p-values, etc.; For more details, see also Roever C (2020) <doi:10.18637/jss.v093.i06>, or Roever C and Friede T (2022) <doi:10.1016/j.cmpb.2022.107303>.
Implementation of Bayesian multi-task regression models and was developed within the context of imaging genetics. The package can currently fit two models. The Bayesian group sparse multi-task regression model of Greenlaw et al. (2017)<doi:10.1093/bioinformatics/btx215> can be fit with implementation using Gibbs sampling. An extension of this model developed by Song, Ge et al. to accommodate both spatial correlation as well as correlation across brain hemispheres can also be fit using either mean-field variational Bayes or Gibbs sampling. The model can also be used more generally for multivariate (non-imaging) phenotypes with spatial correlation.
Fit beta calibration models and obtain calibrated probabilities from them.
This package provides a set of functions to allow analysis of count data (such as faecal egg count data) using Bayesian MCMC methods. Returns information on the possible values for mean count, coefficient of variation and zero inflation (true prevalence) present in the data. A complete faecal egg count reduction test (FECRT) model is implemented, which returns inference on the true efficacy of the drug from the pre- and post-treatment data provided, using non-parametric bootstrapping as well as using Bayesian MCMC. Functions to perform power analyses for faecal egg counts (including FECRT) are also provided.
Constructs treatment and block designs for linear treatment models with crossed or nested block factors. The treatment design can be any feasible linear model and the block design can be any feasible combination of crossed or nested block factors. The block design is a sum of one or more block factors and the block design is optimized sequentially with the levels of each successive block factor optimized conditional on all previously optimized block factors. D-optimality is used throughout except for square or rectangular lattice block designs which are constructed algebraically using mutually orthogonal Latin squares. Crossed block designs with interaction effects are optimized using a weighting scheme which allows for differential weighting of first and second-order block effects. Outputs include a table showing the allocation of treatments to blocks and tables showing the achieved D-efficiency factors for each block and treatment design. Edmondson, R.N. Multi-level Block Designs for Comparative Experiments. JABES 25, 500รข 522 (2020) <doi:10.1007/s13253-020-00416-0>.
Search, query, and download tabular and geospatial data from the British Columbia Data Catalogue (<https://catalogue.data.gov.bc.ca/>). Search catalogue data records based on keywords, data licence, sector, data format, and B.C. government organization. View metadata directly in R, download many data formats, and query geospatial data available via the B.C. government Web Feature Service ('WFS') using dplyr syntax.
This package contains functions to perform Bayesian inference using a spectral analysis of Gaussian process priors. Gaussian processes are represented with a Fourier series based on cosine basis functions. Currently the package includes parametric linear models, partial linear additive models with/without shape restrictions, generalized linear additive models with/without shape restrictions, and density estimation model. To maximize computational efficiency, the actual Markov chain Monte Carlo sampling for each model is done using codes written in FORTRAN 90. This software has been developed using funding supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (no. NRF-2016R1D1A1B03932178 and no. NRF-2017R1D1A3B03035235).
Facilitates some of the analyses performed in studies of behavioral economic discounting. The package supports scoring of the 27-Item Monetary Choice Questionnaire (see Kaplan et al., 2016; <doi:10.1007/s40614-016-0070-9>), calculating k values (Mazur's simple hyperbolic and exponential) using nonlinear regression, calculating various Area Under the Curve (AUC) measures, plotting regression curves for both fit-to-group and two-stage approaches, checking for unsystematic discounting (Johnson & Bickel, 2008; <doi:10.1037/1064-1297.16.3.264>) and scoring of the minute discounting task (see Koffarnus & Bickel, 2014; <doi:10.1037/a0035973>) using the Qualtrics 5-trial discounting template (see the Qualtrics Minute Discounting User Guide; <doi:10.13140/RG.2.2.26495.79527>), which is also available as a .qsf file in this package.
This package provides a simple tool to quantify the amount of transmission of an infectious disease of interest occurring within and between population groups. bumblebee uses counts of observed directed transmission pairs, identified phylogenetically from deep-sequence data or from epidemiological contacts, to quantify transmission flows within and between population groups accounting for sampling heterogeneity. Population groups might include: geographical areas (e.g. communities, regions), demographic groups (e.g. age, gender) or arms of a randomized clinical trial. See the bumblebee website for statistical theory, documentation and examples <https://magosil86.github.io/bumblebee/>.
US baby names provided by the SSA. This package contains all names used for at least 5 children of either sex.
Generating population projections for all countries of the world using several probabilistic components, such as total fertility rate and life expectancy (Raftery et al., 2012 <doi:10.1073/pnas.1211452109>).