Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Create life tables with a Bayesian approach, which can be very useful for modelling a complex health process when considering multiple predisposing factors and multiple coexisting health conditions. Details for this method can be found in: Lynch, Scott, et al., (2022) <doi:10.1177/00811750221112398>; Zang, Emma, et al., (2022) <doi:10.1093/geronb/gbab149>.
Derived from the work of Kruschke (2015, <ISBN:9780124058880>), the present package aims to provide a framework for conducting Bayesian analysis using Markov chain Monte Carlo (MCMC) sampling utilizing the Just Another Gibbs Sampler ('JAGS', Plummer, 2003, <https://mcmc-jags.sourceforge.io>). The initial version includes several modules for conducting Bayesian equivalents of chi-squared tests, analysis of variance (ANOVA), multiple (hierarchical) regression, softmax regression, and for fitting data (e.g., structural equation modeling).
This app provides some useful tools for Offering an accessible GUI for generalised blockmodeling of single-relation, one-mode networks. The user can execute blockmodeling without having to write a line code by using the app's visual helps. Moreover, there are several ways to visualisations networks and their partitions. Finally, the results can be exported as if they were produced by writing code. The development of this package is financially supported by the Slovenian Research Agency (www.arrs.gov.si) within the research project J5-2557 (Comparison and evaluation of different approaches to blockmodeling dynamic networks by simulations with application to Slovenian co-authorship networks).
This package provides a toolbox for analyzing and simulating large networks based on hierarchical exponential-family random graph models (HERGMs).'bigergm implements the estimation for large networks efficiently building on the lighthergm and hergm packages. Moreover, the package contains tools for simulating networks with local dependence to assess the goodness-of-fit.
This package creates bubbles within shiny and rmarkdown backgrounds using the bubbly-bg JavaScript library.
BEAST2 (<https://www.beast2.org>) is a widely used Bayesian phylogenetic tool, that uses DNA/RNA/protein data and many model priors to create a posterior of jointly estimated phylogenies and parameters. BEAST2 is a command-line tool. This package provides a way to call BEAST2 from an R function call.
To visualize the execution data of the processes on BPMN (Business Process Model and Notation) diagrams, using overlays, style customization and interactions, with the bpmn-visualization TypeScript library.
Shows statistics about bytes contained in a file as a circle graph of deviations from mean in sigma increments. The function can be useful for statistically analyze the content of files in a glimpse: text files are shown as a green centered crown, compressed and encrypted files should be shown as equally distributed variations with a very low CV (sigma/mean), and other types of files can be classified between these two categories depending on their text vs binary content, which can be useful to quickly determine how information is stored inside them (databases, multimedia files, etc).
These are miscellaneous functions for working with panel data, quantiles, and printing results. For panel data, the package includes functions for making a panel data balanced (that is, dropping missing individuals that have missing observations in any time period), converting id numbers to row numbers, and to treat repeated cross sections as panel data under the assumption of rank invariance. For quantiles, there are functions to make distribution functions from a set of data points (this is particularly useful when a distribution function is created in several steps), to combine distribution functions based on some external weights, and to invert distribution functions. Finally, there are several other miscellaneous functions for obtaining weighted means, weighted distribution functions, and weighted quantiles; to generate summary statistics and their differences for two groups; and to add or drop covariates from formulas.
Computes appropriate confidence intervals for the likelihood ratio tests commonly used in medicine/epidemiology, using the method of Marill et al. (2015) <doi:10.1177/0962280215592907>. It is particularly useful when the sensitivity or specificity in the sample is 100%. Note that this does not perform the test on nested models--for that, see epicalc::lrtest'.
This package provides an approach which is based on the methodology of the Burden of Communicable Diseases in Europe (BCoDE) and can be used for large and small samples such as individual countries. The Burden of Healthcare-Associated Infections (BHAI) is estimated in disability-adjusted life years, number of infections as well as number of deaths per year. Results can be visualized with various plotting functions and exported into tables.
This package provides an efficient and robust implementation for estimating marginal Hazard Ratio (HR) and Restricted Mean Survival Time (RMST) with covariate adjustment using Daniel et al. (2021) <doi:10.1002/bimj.201900297> and Karrison et al. (2018) <doi:10.1177/1740774518759281>.
Bayesian adaptive randomization is also called outcome adaptive randomization, which is increasingly used in clinical trials.
Calculate Bayesian marginal effects, average marginal effects, and marginal coefficients (also called population averaged coefficients) for models fit using the brms package including fixed effects, mixed effects, and location scale models. These are based on marginal predictions that integrate out random effects if necessary (see for example <doi:10.1186/s12874-015-0046-6> and <doi:10.1111/biom.12707>).
Under- and over-dispersed binary data are modeled using an extended Poisson process model (EPPM) appropriate for binary data. A feature of the model is that the under-dispersion relative to the binomial distribution only needs to be greater than zero, but the over-dispersion is restricted compared to other distributional models such as the beta and correlated binomials. Because of this, the examples focus on under-dispersed data and how, in combination with the beta or correlated distributions, flexible models can be fitted to data displaying both under- and over-dispersion. Using Generalized Linear Model (GLM) terminology, the functions utilize linear predictors for the probability of success and scale-factor with various link functions for p, and log link for scale-factor, to fit a variety of models relevant to areas such as bioassay. Details of the EPPM are in Faddy and Smith (2012) <doi:10.1002/bimj.201100214> and Smith and Faddy (2019) <doi:10.18637/jss.v090.i08>.
This package provides a minimalist web framework for developing application programming interfaces in R that provides a flexible framework for handling common HTTP-requests, errors, logging, and an ability to integrate any R code as server middle-ware.
Quantify outbreak risk posed by individual importers of a transmissible pathogen. Input parameters of negative binomial offspring distributions for the number of transmissions from each infected individual and initial number of infected. Calculate probabilities of final outbreak size and generations of transmission, as described in Toth et al. (2015) <doi:10.3201/eid2108.150170> and Toth et al. (2016) <doi:10.1016/j.epidem.2016.04.002>.
Bayesian MCPMod (Fleischer et al. (2022) <doi:10.1002/pst.2193>) is an innovative method that improves the traditional MCPMod by systematically incorporating historical data, such as previous placebo group data. This R package offers functions for simulating, analyzing, and evaluating Bayesian MCPMod trials with normally distributed endpoints. It enables the assessment of trial designs incorporating historical data across various true dose-response relationships and sample sizes. Robust mixture prior distributions, such as those derived with the Meta-Analytic-Predictive approach (Schmidli et al. (2014) <doi:10.1111/biom.12242>), can be specified for each dose group. Resulting mixture posterior distributions are used in the Bayesian Multiple Comparison Procedure and modeling steps. The modeling step also includes a weighted model averaging approach (Pinheiro et al. (2014) <doi:10.1002/sim.6052>). Estimated dose-response relationships can be bootstrapped and visualized.
Laplace approximations and penalized B-splines are combined for fast Bayesian inference in latent Gaussian models. The routines can be used to fit survival models, especially proportional hazards and promotion time cure models (Gressani, O. and Lambert, P. (2018) <doi:10.1016/j.csda.2018.02.007>). The Laplace-P-spline methodology can also be implemented for inference in (generalized) additive models (Gressani, O. and Lambert, P. (2021) <doi:10.1016/j.csda.2020.107088>). See the associated website for more information and examples.
Running and comparing meta-analyses of data with hierarchical Bayesian models in Stan, including convenience functions for formatting data, plotting and pooling measures specific to meta-analysis. This implements many models from Meager (2019) <doi:10.1257/app.20170299>.
Bayesian quantile regression using the asymmetric Laplace distribution, both continuous as well as binary dependent variables are supported. The package consists of implementations of the methods of Yu & Moyeed (2001) <doi:10.1016/S0167-7152(01)00124-9>, Benoit & Van den Poel (2012) <doi:10.1002/jae.1216> and Al-Hamzawi, Yu & Benoit (2012) <doi:10.1177/1471082X1101200304>. To speed up the calculations, the Markov Chain Monte Carlo core of all algorithms is programmed in Fortran and called from R.
This package provides a client for retrieving data and metadata from major central bank APIs. It supports access to the Bundesbank SDMX Web Service API (<https://www.bundesbank.de/en/statistics/time-series-databases/help-for-sdmx-web-service/web-service-interface-data>), the Swiss National Bank Data Portal (<https://data.snb.ch/en>), the European Central Bank Data Portal API (<https://data.ecb.europa.eu/help/api/overview>), the Bank of England Interactive Statistical Database (<https://www.bankofengland.co.uk/boeapps/database>), the Banco de España API (<https://www.bde.es/webbe/en/estadisticas/recursos/api-estadisticas-bde.html>), the Banque de France Web Service (<https://webstat.banque-france.fr/en/pages/guide-migration-api/>), and Bank of Canada Valet API (<https://www.bankofcanada.ca/valet/docs>).
Bayesian Hierarchical beta-binomial models for modeling cell population to predictors/exposures. This package utilizes runjags to run Gibbs sampling with parallel chains. Options for different covariances/relationship structures between parameters of interest.
Tool to find where a function has its lowest value(minimum). The functions can be any dimensions. Recommended use is with eps=10^-10, but can be run with 10^-20, although this depends on the function. Two more methods are in this package, simple gradient method (Gradmod) and Powell method (Powell). These are not recommended for use, their purpose are purely for comparison.