Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimation of bifurcating autoregressive models of any order, p, BAR(p) as well as several types of bias correction for the least squares estimators of the autoregressive parameters as described in Zhou and Basawa (2005) <doi:10.1016/j.spl.2005.04.024> and Elbayoumi and Mostafa (2020) <doi:10.1002/sta4.342>. Currently, the bias correction methods supported include bootstrap (single, double and fast-double) bias correction and linear-bias-function-based bias correction. Functions for generating and plotting bifurcating autoregressive data from any BAR(p) model are also included. This new version includes calculating several type of bias-corrected and -uncorrected confidence intervals for the least squares estimators of the autoregressive parameters as described in Elbayoumi and Mostafa (2023) <doi:10.6339/23-JDS1092>.
Bayes factors and posterior probabilities in Linear models, aimed at provide a formal Bayesian answer to testing and variable selection problems.
Create a hierarchical acoustic event species classifier out of multiple call type detectors as described in Rankin et al (2017) <doi:10.1111/mms.12381>.
Waffle plots are rectangular pie charts that represent a quantity or abundances using colored squares or other symbol. This makes them better at transmitting information as the discrete number of squares is easier to read than the circular area of pie charts. While the original waffle charts were rectangular with 10 rows and columns, with a single square representing 1%, they are nowadays popular in various infographics to visualize any proportional ratios.
This package implements Bayesian spatio-temporal factor analysis models for multivariate data observed across space and time. The package provides tools for model fitting via Markov chain Monte Carlo (MCMC), spatial and temporal interpolation, and visualization of latent factors and loadings to support inference and exploration of underlying spatio-temporal patterns. Designed for use in environmental, ecological, or public health applications, with support for posterior prediction and uncertainty quantification. Includes functions such as BSTFA() for model fitting and plot_factor() to visualize the latent processes. Functions are based on and extended from methods described in Berrett, et al. (2020) <doi:10.1002/env.2609>.
This package provides a collection of functions to analyse, visualize and interpret wind data and to calculate the potential energy production of wind turbines.
Fast Bayesian inference of marginal and conditional independence structures from high-dimensional data. Leday and Richardson (2019), Biometrics, <doi:10.1111/biom.13064>.
The calculator computes bifactor indices such as explained common variance (ECV), hierarchical Omega (OmegaH), percentage of uncontaminated correlations (PUC), item explained common variance (I-ECV), and more. This package is an R version of the Excel based Bifactor Indices Calculator (Dueber, 2017) <doi:10.13023/edp.tool.01> with added convenience features for directly utilizing output from several programs that can fit confirmatory factor analysis or item response models.
Bayesian synthetic likelihood (BSL, Price et al. (2018) <doi:10.1080/10618600.2017.1302882>) is an alternative to standard, non-parametric approximate Bayesian computation (ABC). BSL assumes a multivariate normal distribution for the summary statistic likelihood and it is suitable when the distribution of the model summary statistics is sufficiently regular. This package provides a Metropolis Hastings Markov chain Monte Carlo implementation of four methods (BSL, uBSL, semiBSL and BSLmisspec) and two shrinkage estimators (graphical lasso and Warton's estimator). uBSL (Price et al. (2018) <doi:10.1080/10618600.2017.1302882>) uses an unbiased estimator to the normal density. A semi-parametric version of BSL (semiBSL, An et al. (2018) <arXiv:1809.05800>) is more robust to non-normal summary statistics. BSLmisspec (Frazier et al. 2019 <arXiv:1904.04551>) estimates the Gaussian synthetic likelihood whilst acknowledging that there may be incompatibility between the model and the observed summary statistic. Shrinkage estimation can help to decrease the number of model simulations when the dimension of the summary statistic is high (e.g., BSLasso, An et al. (2019) <doi:10.1080/10618600.2018.1537928>). Extensions to this package are planned. For a journal article describing how to use this package, see An et al. (2022) <doi:10.18637/jss.v101.i11>.
Multicenter randomized trials involve the collection and analysis of data from numerous study participants across multiple sites. Outliers may be present. To identify outliers, this package examines data at the individual level (univariate and multivariate) and site-level (with and without covariate adjustment). Methods are outlined in further detail in Rigdon et al (to appear).
This package provides functions to specify, fit and visualize nested partially-latent class models ( Wu, Deloria-Knoll, Hammitt, and Zeger (2016) <doi:10.1111/rssc.12101>; Wu, Deloria-Knoll, and Zeger (2017) <doi:10.1093/biostatistics/kxw037>; Wu and Chen (2021) <doi:10.1002/sim.8804>) for inference of population disease etiology and individual diagnosis. In the motivating Pneumonia Etiology Research for Child Health (PERCH) study, because both quantities of interest sum to one hundred percent, the PERCH scientists frequently refer to them as population etiology pie and individual etiology pie, hence the name of the package.
The goal of the package is to provide an easy-to-use method for estimating degrees of relatedness (up to the second degree) for extreme low-coverage data. The package also allows users to quantify and visualise the level of confidence in the estimated degrees of relatedness.
This package provides classes for storing and manipulating arbitrary-precision integer vectors and high-precision floating-point vectors. These extend the range and precision of the integer and double data types found in R. This package utilizes the Boost.Multiprecision C++ library. It is specifically designed to work well with the tidyverse collection of R packages.
This package provides a novel data-augmentation Markov chain Monte Carlo sampling algorithm to fit a progressive compartmental model of disease in a Bayesian framework Morsomme, R.N., Holloway, S.T., Ryser, M.D. and Xu J. (2024) <doi:10.48550/arXiv.2408.14625>.
This package performs statistical estimation and inference-related computations by accessing and executing modified versions of Fortran subroutines originally published in the Association for Computing Machinery (ACM) journal Transactions on Mathematical Software (TOMS) by Bunch, Gay and Welsch (1993) <doi:10.1145/151271.151279>. The acronym BGW (from the authors last names) will be used when making reference to technical content (e.g., algorithm, methodology) that originally appeared in ACM TOMS. A key feature of BGW is that it exploits the special structure of statistical estimation problems within a trust-region-based optimization approach to produce an estimation algorithm that is much more effective than the usual practice of using optimization methods and codes originally developed for general optimization. The bgw package bundles R wrapper (and related) functions with modified Fortran source code so that it can be compiled and linked in the R environment for fast execution. This version implements a function ('bgw_mle.R') that performs maximum likelihood estimation (MLE) for a user-provided model object that computes probabilities (a.k.a. probability densities). The original motivation for producing this package was to provide fast, efficient, and reliable MLE for discrete choice models that can be called from the Apollo choice modelling R package ( see <https://www.apollochoicemodelling.com>). Starting with the release of Apollo 3.0, BGW is the default estimation package. However, estimation can also be performed using BGW in a stand-alone fashion without using Apollo (as shown in simple examples included in the package). Note also that BGW capabilities are not limited to MLE, and future extension to other estimators (e.g., nonlinear least squares, generalized method of moments, etc.) is possible. The Fortran code included in bgw was modified by one of the original BGW authors (Bunch) under his rights as confirmed by direct consultation with the ACM Intellectual Property and Rights Manager. See <https://authors.acm.org/author-resources/author-rights>. The main requirement is clear citation of the original publication (see above).
This package provides tools for Bayesian basket trial design and analysis using a novel three-component local power prior framework with global borrowing control, pairwise similarity assessment and a borrowing threshold. Supports simulation-based evaluation of operating characteristics and comparison with other methods. Applicable to both equal and unequal sample size settings in early-phase oncology trials. For more details see Zhou et al. (2023) <doi:10.48550/arXiv.2312.15352>.
Runs hierarchical linear Bayesian models. Samples from the posterior distributions of model parameters in JAGS (Just Another Gibbs Sampler; Plummer, 2017, <http://mcmc-jags.sourceforge.net>). Computes Bayes factors for group parameters of interest with the Savage-Dickey density ratio (Wetzels, Raaijmakers, Jakab, Wagenmakers, 2009, <doi:10.3758/PBR.16.4.752>).
This package provides access to a range of functions for analyzing, applying and visualizing Bayesian response-adaptive trial designs for a binary endpoint. Includes the predictive probability approach and the predictive evidence value designs for binary endpoints.
Collect data from and make posts on Bluesky Social via the Hypertext Transfer Protocol (HTTP) Application Programming Interface (API), as documented at <https://atproto.com/specs/xrpc>. This further supports broader queries to the Authenticated Transfer (AT) Protocol <https://atproto.com/> which Bluesky Social relies on. Data is returned in a tidy format and posts can be made using a simple interface.
This package provides a set of user-friendly functions designed to fill gaps in existing introductory biostatistics R tools, making it easier for newcomers to perform basic biostatistical analyses without needing advanced programming skills. The methods implemented in this package are based on the works: Connor (1987) <doi:10.2307/2531961> Fleiss, Levin, & Paik (2013, ISBN:978-1-118-62561-3) Levin & Chen (1999) <doi:10.1080/00031305.1999.10474431> McNemar (1947) <doi:10.1007/BF02295996>.
This package provides functions to construct efficient block designs for 3-level factorial experiments in block size 3. The designs ensure the estimation of all main effects and two-factor interactions in minimum number of replications. For more details, see Dey and Mukerjee (2012) <doi:10.1016/j.spl.2012.06.014> and Dash, S., Parsad, R. and Gupta, V.K. (2013) <doi:10.1007/s40003-013-0059-5>.
The Behavioral Change Point Analysis (BCPA) is a method of identifying hidden shifts in the underlying parameters of a time series, developed specifically to be applied to animal movement data which is irregularly sampled. The method is based on: E. Gurarie, R. Andrews and K. Laidre A novel method for identifying behavioural changes in animal movement data (2009) Ecology Letters 12:5 395-408. A development version is on <https://github.com/EliGurarie/bcpa>. NOTE: the BCPA method may be useful for any univariate, irregularly sampled Gaussian time-series, but animal movement analysts are encouraged to apply correlated velocity change point analysis as implemented in the smoove package, as of this writing on GitHub at <https://github.com/EliGurarie/smoove>. An example of a univariate analysis is provided in the UnivariateBCPA vignette.
Frequentist inference on adaptively generated data. The methods implemented are based on Zhan et al. (2021) <doi:10.48550/arXiv.2106.02029> and Hadad et al. (2021) <doi:10.48550/arXiv.1911.02768>. For illustration, several functions for simulating non-contextual and contextual adaptive experiments using Thompson sampling are also supplied.
Set of functions to calculate Benthic Biotic Indices from composition data, obtained whether from morphotaxonomic inventories or sequencing data. Based on reference ecological weights publicly available for a set of commonly used marine biotic indices, such as AMBI (A Marine Biotic Index, Borja et al., 2000) <doi:10.1016/S0025-326X(00)00061-8> NSI (Norwegian Sensitivity Index) and ISI (Indicator Species Index) (Rygg 2013, <ISBN:978-82-577-6210-0>). It provides the ecological quality status of the samples based on each BBI as well as the normalized Ecological Quality Ratio.