Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The algorithm is based on the non-negative tucker decomposition (NTD2) of nnTensor.
SNPediaR provides some tools for downloading and parsing data from the SNPedia web site <http://www.snpedia.com>. The implemented functions allow users to import the wiki text available in SNPedia pages and to extract the most relevant information out of them. If some information in the downloaded pages is not automatically processed by the library functions, users can easily implement their own parsers to access it in an efficient way.
SBGNview is a tool set for pathway based data visalization, integration and analysis. SBGNview is similar and complementary to the widely used Pathview, with the following key features: 1. Pathway definition by the widely adopted Systems Biology Graphical Notation (SBGN); 2. Supports multiple major pathway databases beyond KEGG (Reactome, MetaCyc, SMPDB, PANTHER, METACROP) and user defined pathways; 3. Covers 5,200 reference pathways and over 3,000 species by default; 4. Extensive graphics controls, including glyph and edge attributes, graph layout and sub-pathway highlight; 5. SBGN pathway data manipulation, processing, extraction and analysis.
Assigning probability scores to protein interactions captured in affinity purification mass spectrometry (AP-MS) expriments to infer protein-protein interactions. The output would facilitate non-specific background removal as contaminants are commonly found in AP-MS data.
Channel interference in mass cytometry can cause spillover and may result in miscounting of protein markers. We develop a nonparametric finite mixture model and use the mixture components to estimate the probability of spillover. We implement our method using expectation-maximization to fit the mixture model.
This package provides a tool to search and download a collection of publicly available single cell ATAC-seq datasets and their metadata. scATAC-Explorer aims to act as a single point of entry for users looking to study single cell ATAC-seq data. Users can quickly search available datasets using the metadata table and download datasets of interest for immediate analysis within R.
This package implements algorithms and data structures for performing gene expression signature (GES) searches, and subsequently interpreting the results functionally with specialized enrichment methods.
SpatialCPie is an R package designed to facilitate cluster evaluation for spatial transcriptomics data by providing intuitive visualizations that display the relationships between clusters in order to guide the user during cluster identification and other downstream applications. The package is built around a shiny "gadget" to allow the exploration of the data with multiple plots in parallel and an interactive UI. The user can easily toggle between different cluster resolutions in order to choose the most appropriate visual cues.
Expression profiling using microarray technology to prove if Hypoxia Promotes Efficient Differentiation of Human Embryonic Stem Cells to Functional Endothelium by Prado-Lopez et al. (2010) Stem Cells 28:407-418. Full data available at Gene Expression Omnibus series GSE37761.
This package aims to quantify and remove putative double strand DNA from a strand-specific RNA sample. There are also options and methods to plot the positive/negative proportions of all sliding windows, which allow users to have an idea of how much the sample was contaminated and the appropriate threshold to be used for filtering.
This package contains default datasets used by the Bioconductor package SingleCellAlleleExperiment. The raw FASTQ files were sourced from publicly accessible datasets provided by 10x Genomics. Subsequently, our scIGD snakemake workflow was employed to process these FASTQ files. The resulting output from scIGD constitutes to the contents of this data package.
SNM is a modeling strategy especially designed for normalizing high-throughput genomic data. The underlying premise of our approach is that your data is a function of what we refer to as study-specific variables. These variables are either biological variables that represent the target of the statistical analysis, or adjustment variables that represent factors arising from the experimental or biological setting the data is drawn from. The SNM approach aims to simultaneously model all study-specific variables in order to more accurately characterize the biological or clinical variables of interest.
seqsetvis enables the visualization and analysis of sets of genomic sites in next gen sequencing data. Although seqsetvis was designed for the comparison of mulitple ChIP-seq samples, this package is domain-agnostic and allows the processing of multiple genomic coordinate files (bed-like files) and signal files (bigwig files pileups from bam file). seqsetvis has multiple functions for fetching data from regions into a tidy format for analysis in data.table or tidyverse and visualization via ggplot2.
srnadiff is a package that finds differently expressed regions from RNA-seq data at base-resolution level without relying on existing annotation. To do so, the package implements the identify-then-annotate methodology that builds on the idea of combining two pipelines approachs differential expressed regions detection and differential expression quantification. It reads BAM files as input, and outputs a list differentially regions, together with the adjusted p-values.
Subsampling of high throughput sequencing count data for use in experiment design and analysis.
This package is here to support legacy usages of it, but it should not be used for new code development. It provides a single function, plotScreen, for visualising data in microtitre plate or slide format. As a better alternative for such functionality, please consider the platetools package on CRAN (https://cran.r-project.org/package=platetools and https://github.com/Swarchal/platetools), or ggplot2 (geom_raster, facet_wrap) as exemplified in the vignette of this package.
Using site polymorphism is one of the ways to cluster DNA/protein sequences but it is possible for the sequences with the same polymorphism on a single site to be genetically distant. This package is aimed at clustering sequences using site polymorphism and their corresponding phylogenetic trees. By considering their location on the tree, only the structurally adjacent sequences will be clustered. However, the adjacent sequences may not necessarily have the same polymorphism. So a branch-and-bound like algorithm is used to minimize the entropy representing the purity of site polymorphism of each cluster.
Bulk RNA-seq from GTEx on 4,000 randomly selected, expressed genes. Data has been processed for co-expression analysis.
Small RNA sequencing viewer.
The SeqSQC is designed to identify problematic samples in NGS data, including samples with gender mismatch, contamination, cryptic relatedness, and population outlier.
This package contains two microarray and two RNA-seq datasets that have been preprocessed for use with the sampleClassifier package. The RNA-seq data are derived from Fagerberg et al. (2014) and the Illumina Body Map 2.0 data. The microarray data are derived from Roth et al. (2006) and Ge et al. (2005).
The scRNAseqApp is a Shiny app package designed for interactive visualization of single-cell data. It is an enhanced version derived from the ShinyCell, repackaged to accommodate multiple datasets. The app enables users to visualize data containing various types of information simultaneously, facilitating comprehensive analysis. Additionally, it includes a user management system to regulate database accessibility for different users.
sosta (Spatial Omics STructure Analysis) is a package for analyzing spatial omics data to explore tissue organization at the anatomical structure level. It reconstructs anatomically relevant structures based on molecular features or cell types. It further calculates a range of metrics at the structure level to quantitatively describe tissue architecture. The package is designed to integrate with other packages for the analysis of spatial omics data.
Includes probe-level and expression data for the HGU133 and HGU95 spike-in experiments.