Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementation of an efficient BLAST-like sequence comparison algorithm, written in C++11 and using native R datatypes. Blaster is based on nsearch - Schmid et al (2018) <doi:10.1101/399782>.
This package provides methods for frontier analysis, Data Envelopment Analysis (DEA), under different technology assumptions (fdh, vrs, drs, crs, irs, add/frh, and fdh+), and using different efficiency measures (input based, output based, hyperbolic graph, additive, super, and directional efficiency). Peers and slacks are available, partial price information can be included, and optimal cost, revenue and profit can be calculated. Evaluation of mergers is also supported. Methods for graphing the technology sets are also included. There is also support for comparative methods based on Stochastic Frontier Analyses (SFA) and for convex nonparametric least squares of convex functions (STONED). In general, the methods can be used to solve not only standard models, but also many other model variants. It complements the book, Bogetoft and Otto, Benchmarking with DEA, SFA, and R, Springer-Verlag, 2011, but can of course also be used as a stand-alone package.
Computation of the minimum sample size using the Average Coverage Criterion or the Average Length Criterion for estimating binomial proportions using beta prior distributions. For more details see Costa (2025) <DOI:10.1007/978-3-031-72215-8_14>.
R client to the Binance Public Rest API for data collection on cryptocurrencies, portfolio management and trading: <https://github.com/binance/binance-spot-api-docs/blob/master/rest-api.md>.
This package provides a GUI with which users can construct and interact with biplots.
Different adjustment methods for batch effects in biomarker data, such as from tissue microarrays. Some methods attempt to retain differences between batches that may be due to between-batch differences in "biological" factors that influence biomarker values.
Calculates business duration between two dates. This excluding weekends, public holidays and non-business hours.
Due to a limited availability of observed high-resolution precipitation records with adequate length, simulations with stochastic precipitation models are used to generate series for subsequent studies [e.g. Khaliq and Cunmae, 1996, <doi:10.1016/0022-1694(95)02894-3>, Vandenberghe et al., 2011, <doi:10.1029/2009WR008388>]. This package contains an R implementation of the original Bartlett-Lewis rectangular pulse model (BLRPM), developed by Rodriguez-Iturbe et al. (1987) <doi:10.1098/rspa.1987.0039>. It contains a function for simulating a precipitation time series based on storms and cells generated by the model with given or estimated model parameters. Additionally BLRPM parameters can be estimated from a given or simulated precipitation time series. The model simulations can be plotted in a three-layer plot including an overview of generated storms and cells by the model (which can also be plotted individually), a continuous step-function and a discrete precipitation time series at a chosen aggregation level.
Efficient methods for Bayesian inference of state space models via Markov chain Monte Carlo (MCMC) based on parallel importance sampling type weighted estimators (Vihola, Helske, and Franks, 2020, <doi:10.1111/sjos.12492>), particle MCMC, and its delayed acceptance version. Gaussian, Poisson, binomial, negative binomial, and Gamma observation densities and basic stochastic volatility models with linear-Gaussian state dynamics, as well as general non-linear Gaussian models and discretised diffusion models are supported. See Helske and Vihola (2021, <doi:10.32614/RJ-2021-103>) for details.
Executes BASIC programs from the 1970s, for historical and educational purposes. This enables famous examples of early machine learning, artificial intelligence, natural language processing, cellular automata, and so on, to be run in their original form.
Diagnostic tools based on two-way anova and median-polish residual plots for Bicluster output obtained from packages; "biclust" by Kaiser et al.(2008),"isa2" by Csardi et al. (2010) and "fabia" by Hochreiter et al. (2010). Moreover, It provides visualization tools for bicluster output and corresponding non-bicluster rows- or columns outcomes. It has also extended the idea of Kaiser et al.(2008) which is, extracting bicluster output in a text format, by adding two bicluster methods from the fabia and isa2 R packages.
Generate urls and hyperlinks to commonly used biological databases and resources based on standard identifiers. This is primarily useful when writing dynamic reports that reference things like gene symbols in text or tables, allowing you to, for example, convert gene identifiers to hyperlinks pointing to their entry in the NCBI Gene database. Currently supports NCBI Gene, PubMed', Gene Ontology, KEGG', CRAN and Bioconductor.
Collect data from and make posts on Bluesky Social via the Hypertext Transfer Protocol (HTTP) Application Programming Interface (API), as documented at <https://atproto.com/specs/xrpc>. This further supports broader queries to the Authenticated Transfer (AT) Protocol <https://atproto.com/> which Bluesky Social relies on. Data is returned in a tidy format and posts can be made using a simple interface.
Facilitates many of the analyses performed in studies of behavioral economic demand. The package supports commonly-used options for modeling operant demand including (1) data screening proposed by Stein, Koffarnus, Snider, Quisenberry, & Bickel (2015; <doi:10.1037/pha0000020>), (2) fitting models of demand such as linear (Hursh, Raslear, Bauman, & Black, 1989, <doi:10.1007/978-94-009-2470-3_22>), exponential (Hursh & Silberberg, 2008, <doi:10.1037/0033-295X.115.1.186>) and modified exponential (Koffarnus, Franck, Stein, & Bickel, 2015, <doi:10.1037/pha0000045>), and (3) calculating numerous measures relevant to applied behavioral economists (Intensity, Pmax, Omax). Also supports plotting and comparing data.
Unsupervised clustering protocol for large scale structured data, based on a low dimensional representation of the data. Dimensionality reduction is performed using a parallelized implementation of the t-Stochastic Neighboring Embedding algorithm (Garriga J. and Bartumeus F. (2018), <arXiv:1812.09869>).
Facilitates the importation of the Boston Blue Bike trip data since 2015. Functions include the computation of trip distances of given trip data. It can also map the location of stations within a given radius and calculate the distance to nearby stations. Data is from <https://www.bluebikes.com/system-data>.
Bayesian nonparametric density estimation modeling mixtures by a Ferguson-Klass type algorithm for posterior normalized random measures.
This package performs Bayesian posterior inference for heteroskedastic Gaussian processes. Models are trained through MCMC including elliptical slice sampling (ESS) of latent noise processes and Metropolis-Hastings sampling of kernel hyperparameters. Replicates are handled efficientyly through a Woodbury formulation of the joint likelihood for the mean and noise process (Binois, M., Gramacy, R., Ludkovski, M. (2018) <doi:10.1080/10618600.2018.1458625>) For large data, Vecchia-approximation for faster computation is leveraged (Sauer, A., Cooper, A., and Gramacy, R., (2023), <doi:10.1080/10618600.2022.2129662>). Incorporates OpenMP and SNOW parallelization and utilizes C'/'C++ under the hood.
Computes uniform bounds on the distance between the cumulative distribution function of a standardized sum of random variables and its first-order Edgeworth expansion, following the article Derumigny, Girard, Guyonvarch (2021) <arXiv:2101.05780>.
This package provides a Gibbs sampler algorithm was developed to estimate change points in constant-wise data sequences while performing clustering simultaneously. The algorithm is described in da Cruz, A. C. and de Souza, C. P. E "A Bayesian Approach for Clustering Constant-wise Change-point Data" <doi:10.48550/arXiv.2305.17631>.
Implementation of bivariate binomial, geometric, and Poisson distributions based on conditional specifications. The package also includes tools for data generation and goodness-of-fit testing for these three distribution families. For methodological details, see Ghosh, Marques, and Chakraborty (2025) <doi:10.1080/03610926.2024.2315294>, Ghosh, Marques, and Chakraborty (2023) <doi:10.1080/03610918.2021.2004419>, and Ghosh, Marques, and Chakraborty (2021) <doi:10.1080/02664763.2020.1793307>.
This package implements optimal matching with near-fine balance in large observational studies with the use of optimal calipers to get a sparse network. The caliper is optimal in the sense that it is as small as possible such that a matching exists. The main functions in the bigmatch package are optcal() to find the optimal caliper, optconstant() to find the optimal number of nearest neighbors, and nfmatch() to find a near-fine balance match with a caliper and a restriction on the number of nearest neighbors. Yu, R., Silber, J. H., and Rosenbaum, P. R. (2020). <DOI:10.1214/19-sts699>.
Calculates the prices of European options based on the universal solution provided by Bakshi, Cao and Chen (1997) <doi:10.1111/j.1540-6261.1997.tb02749.x>. This solution considers stochastic volatility, stochastic interest and random jumps. Please cite their work if this package is used.
This package provides functions to compute pair-wise dissimilarities (distance matrices) and multiple-site dissimilarities, separating the turnover and nestedness-resultant components of taxonomic (incidence and abundance based), functional and phylogenetic beta diversity.