Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Helping biologists to choose the most suitable approach to link their research to conservation. After answering few questions on the data available, geographic and taxonomic scope, conserveR ranks existing methods for conservation prioritization and systematic conservation planning by suitability. The methods data base of conserveR contains 133 methods for conservation prioritization based on a systematic review of > 12,000 scientific publications from the fields of spatial conservation prioritization, systematic conservation planning, biogeography and ecology.
The CalMaTe method calibrates preprocessed allele-specific copy number estimates (ASCNs) from DNA microarrays by controlling for single-nucleotide polymorphism-specific allelic crosstalk. The resulting ASCNs are on average more accurate, which increases the power of segmentation methods for detecting changes between copy number states in tumor studies including copy neutral loss of heterozygosity. CalMaTe applies to any ASCNs regardless of preprocessing method and microarray technology, e.g. Affymetrix and Illumina.
Modeling under- and over-dispersed count data using extended Poisson process models as in the article Faddy and Smith (2011) <doi:10.18637/jss.v069.i06> .
Includes climate data from Japan Meteorological Agency ('JMA') <https://www.jma.go.jp/jma/indexe.html>. Can download climate data from JMA'.
Works with the Citizen Voting Age Population special tabulation from the US Census Bureau <https://www.census.gov/programs-surveys/decennial-census/about/voting-rights/cvap.html>. Provides tools to download and process raw data. Also provides a downloading interface to processed data. Implements a very basic approach to estimate block level citizen voting age population from block group data.
This package provides tools for penalized estimation of flexible hidden Markov models for time series of counts w/o the need to specify a (parametric) family of distributions. These include functions for model fitting, model checking, and state decoding. For details, see Adam, T., Langrock, R., and Weià , C.H. (2019): Penalized Estimation of Flexible Hidden Markov Models for Time Series of Counts. <arXiv:1901.03275>.
Functionality to perform adaptive multi-wave sampling for efficient chart validation. Code allows one to define strata, adaptively sample using several types of confidence bounds for the quantity of interest (Lai's confidence bands, Bayesian credible intervals, normal confidence intervals), and sampling strategies (random sampling, stratified random sampling, Neyman's sampling, see Neyman (1934) <doi:10.2307/2342192> and Neyman (1938) <doi:10.1080/01621459.1938.10503378>).
Automated assessment and selection of weighting factors for accurate quantification using linear calibration curve. In addition, a shiny App is provided, allowing users to analyze their data using an interactive graphical user interface, without any programming requirements.
Cochran-Mantel-Haenszel methods (Cochran (1954) <doi:10.2307/3001616>; Mantel and Haenszel (1959) <doi:10.1093/jnci/22.4.719>; Landis et al. (1978) <doi:10.2307/1402373>) are a suite of tests applicable to categorical data. A competitor to those tests is the procedure of Nonparametric ANOVA which was initially introduced in Rayner and Best (2013) <doi:10.1111/anzs.12041>. The methodology was then extended in Rayner et al. (2015) <doi:10.1111/anzs.12113>. This package employs functions related to both methodologies and serves as an accompaniment to the book: An Introduction to Cochranâ Mantelâ Haenszel and Non-Parametric ANOVA. The package also contains the data sets used in that text.
Perform a correlational class analysis of the data, resulting in a partition of the data into separate modules.
To optimize clinical trial designs and data analysis methods consistently through trial simulation, we need to simulate multivariate mixed-type virtual patient data independent of designs and analysis methods under evaluation. To make the outcome of optimization more realistic, relevant empirical patient level data should be utilized when itâ s available. However, a few problems arise in simulating trials based on small empirical data, where the underlying marginal distributions and their dependence structure cannot be understood or verified thoroughly due to the limited sample size. To resolve this issue, we use the copula invariance property, which can generate the joint distribution without making a strong parametric assumption. The function copula.sim can generate virtual patient data with optional data validation methods that are based on energy distance and ball divergence measurement. The function compare.copula.sim can conduct comparison of marginal mean and covariance of simulated data. To simulate patient-level data from a hypothetical treatment arm that would perform differently from the observed data, the function new.arm.copula.sim can be used to generate new multivariate data with the same dependence structure of the original data but with a shifted mean vector.
Weekly notified dengue cases and climate variables in Colombo district Sri Lanka from 2008/ week-52 to 2014/ week-21.
As different antipsychotic medications have different potencies, the doses of different medications cannot be directly compared. Various strategies are used to convert doses into a common reference so that comparison is meaningful. Chlorpromazine (CPZ) has historically been used as a reference medication into which other antipsychotic doses can be converted, as "chlorpromazine-equivalent doses". Using conversion keys generated from widely-cited scientific papers, e.g. Gardner et. al 2010 <doi:10.1176/appi.ajp.2009.09060802> and Leucht et al. 2016 <doi:10.1093/schbul/sbv167>, antipsychotic doses are converted to CPZ (or any specified antipsychotic) equivalents. The use of the package is described in the included vignette. Not for clinical use.
Calculate confidence and consistency that measure the goodness-of-fit and transferability of predictive/potential distribution models (including species distribution models) as described by Somodi & Bede-Fazekas et al. (2024) <doi:10.1016/j.ecolmodel.2024.110667>.
Every research team have their own script for data management, statistics and most importantly hemodynamic indices. The purpose is to standardize scripts utilized in clinical research. The hemodynamic indices can be used in a long-format dataframe, and add both periods of interest (trigger-periods), and delete artifacts with deleter-files. Transfer function analysis (Claassen et al. (2016) <doi:10.1177/0271678X15626425>) and Mx (Czosnyka et al. (1996) <doi:10.1161/01.str.27.10.1829>) can be calculated using this package.
Posterior inference under the convex mixture regression (CoMiRe) models introduced by Canale, Durante, and Dunson (2018) <doi:10.1111/biom.12917>.
It fits finite mixture models for censored or/and missing data using several multivariate distributions. Point estimation and asymptotic inference (via empirical information matrix) are offered as well as censored data generation. Pairwise scatter and contour plots can be generated. Possible multivariate distributions are the well-known normal, Student-t and skew-normal distributions. This package is an complement of Lachos, V. H., Moreno, E. J. L., Chen, K. & Cabral, C. R. B. (2017) <doi:10.1016/j.jmva.2017.05.005> for the multivariate skew-normal case.
Defines classes and methods to cross-validate various binary classification algorithms used for "class prediction" problems.
Core functions for simulating quantities of interest from generalised linear models (GLM). This package will form the backbone of a series of other packages that improve the interpretation of GLM estimates.
Returns an edit-distance based clusterization of an input vector of strings. Each cluster will contain a set of strings w/ small mutual edit-distance (e.g., Levenshtein, optimum-sequence-alignment, Damerau-Levenshtein), as computed by stringdist::stringdist(). The set of all mutual edit-distances is then used by graph algorithms (from package igraph') to single out subsets of high connectivity.
This package provides utilities for working with various Confluence API <https://docs.atlassian.com/ConfluenceServer/rest/latest/>, including a functionality to convert an R Markdown document to Confluence format and upload it to Confluence automatically.
This package provides estimates of several summary measures for clinical trials including the average hazard ratio, the weighted average hazard ratio, the restricted superiority probability ratio, the restricted mean survival difference and the ratio of restricted mean times lost, based on the short-term and long-term hazard ratio model (Yang, 2005 <doi:10.1093/biomet/92.1.1>) which accommodates various non-proportional hazards scenarios. The inference procedures and the asymptotic results for the summary measures are discussed in Yang (2018, <doi:10.1002/sim.7676>).
This package performs simple correspondence analysis on a two-way contingency table, or multiple correspondence analysis (homogeneity analysis) on data with p categorical variables, and produces bootstrap-based elliptical confidence regions around the projected coordinates for the category points. Includes routines to plot the results in a variety of styles. Also reports the standard numerical output for correspondence analysis.
Computes a single scalar metric for diurnal cortisol cycle analysis, the Cortisol Sine Score (CSS). The score is calculated as the sum over time points of concentration multiplied by sin(2 * pi * time / 24), giving positive weights to morning time points and negative weights to evening ones. The method is model-free, robust, and suitable for regression, classification, clustering, and biomarker research.