Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a framework and toolkit to guide R dashboard developers in implementing the Behavioral Insight Design (BID) framework. The package offers functions for documenting each of the five stages (Interpret, Notice, Anticipate, Structure, and Validate), along with a comprehensive concept dictionary. Works with both shiny applications and Quarto dashboards.
Extends blockr.core with interactive blocks for visual data wrangling using dplyr and tidyr operations. Users can build data transformation pipelines through a graphical interface without writing code directly. Includes blocks for filtering, selecting, mutating, summarizing, joining, and arranging data, with support for complex expressions, grouping operations, and real-time validation.
This package provides the C++ header-only library barry for use in R packages. barry is a C++ template library for counting sufficient statistics on binary arrays and building discrete exponential-family models. It provides tools for sparse arrays, user-defined count statistics, support set constraints, power set generation, and includes modules for Discrete Exponential Family Models (DEFMs) and network statistics. By placing these headers in this package, we offer an efficient distribution system for CRAN as replication of this code in the sources of other packages is avoided. This package follows the same approach as the BH package which provides Boost headers for R packages.
Several implementations of a novel Bayesian hierarchical statistical model of nucleotide recoding RNA-seq experiments (NR-seq; TimeLapse-seq, SLAM-seq, TUC-seq, etc.) for analyzing and comparing NR-seq datasets (see Vock and Simon (2023) <doi:10.1261/rna.079451.122>). NR-seq is a powerful extension of RNA-seq that provides information about the kinetics of RNA metabolism (e.g., RNA degradation rate constants), which is notably lacking in standard RNA-seq data. The statistical model makes maximal use of these high-throughput datasets by sharing information across transcripts to significantly improve uncertainty quantification and increase statistical power. bakR includes a maximally efficient implementation of this model for conservative initial investigations of datasets. bakR also provides more highly powered implementations using the probabilistic programming language Stan to sample from the full posterior distribution. bakR performs multiple-test adjusted statistical inference with the output of these model implementations to help biologists separate signal from background. Methods to automatically visualize key results and detect batch effects are also provided.
This package contains tools for survey statistics (especially in educational assessment) for datasets with replication designs (jackknife, bootstrap, replicate weights; see Kolenikov, 2010; Pfefferman & Rao, 2009a, 2009b, <doi:10.1016/S0169-7161(09)70003-3>, <doi:10.1016/S0169-7161(09)70037-9>); Shao, 1996, <doi:10.1080/02331889708802523>). Descriptive statistics, linear and logistic regression, path models for manifest variables with measurement error correction and two-level hierarchical regressions for weighted samples are included. Statistical inference can be conducted for multiply imputed datasets and nested multiply imputed datasets and is in particularly suited for the analysis of plausible values (for details see George, Oberwimmer & Itzlinger-Bruneforth, 2016; Bruneforth, Oberwimmer & Robitzsch, 2016; Robitzsch, Pham & Yanagida, 2016). The package development was supported by BIFIE (Federal Institute for Educational Research, Innovation and Development of the Austrian School System; Salzburg, Austria).
Our recently developed fully robust Bayesian semiparametric mixed-effect model for high-dimensional longitudinal studies with heterogeneous observations can be implemented through this package. This model can distinguish between time-varying interactions and constant-effect-only cases to avoid model misspecifications. Facilitated by spike-and-slab priors, this model leads to superior performance in estimation, identification and statistical inference. In particular, robust Bayesian inferences in terms of valid Bayesian credible intervals on both parametric and nonparametric effects can be validated on finite samples. The Markov chain Monte Carlo algorithms of the proposed and alternative models are efficiently implemented in C++'.
This package provides tools for bioinformatics modeling using recursive transformer-inspired architectures, autoencoders, random forests, XGBoost, and stacked ensemble models. Includes utilities for cross-validation, calibration, benchmarking, and threshold optimization in predictive modeling workflows. The methodology builds on ensemble learning (Breiman 2001 <doi:10.1023/A:1010933404324>), gradient boosting (Chen and Guestrin 2016 <doi:10.1145/2939672.2939785>), autoencoders (Hinton and Salakhutdinov 2006 <doi:10.1126/science.1127647>), and recursive transformer efficiency approaches such as Mixture-of-Recursions (Bae et al. 2025 <doi:10.48550/arXiv.2507.10524>).
Simulate, estimate and forecast a wide range of regression based dynamic models for bounded time series, covering the most commonly applied models in the literature. The main calculations are done in FORTRAN, which translates into very fast algorithms.
Species Distribution Modeling (SDM) is a practical methodology that aims to estimate the area of distribution of a species. However, most of the work has focused on estimating static expressions of the correlation between environmental variables. The outputs of correlative species distribution models can be interpreted as maps of the suitable environment for a species but not generally as maps of its actual distribution. Soberón and Peterson (2005) <doi:10.17161/bi.v2i0.4> presented the BAM scheme, a heuristic framework that states that the occupied area of a species occurs on sites that have been accessible through dispersal (M) and have both favorable biotic (B) and abiotic conditions (A). The bamm package implements classes and functions to operate on each element of the BAM and by using a cellular automata model where the occupied area of a species at time t is estimated by the multiplication of three binary matrices: one matrix represents movements (M), another abiotic -niche- tolerances (A), and a third, biotic interactions (B). The theoretical background of the package can be found in Soberón and Osorio-Olvera (2023) <doi:10.1111/jbi.14587>.
This package implements the Bayesian Augmented Control (BAC, a.k.a. Bayesian historical data borrowing) method under clinical trial setting by calling Just Another Gibbs Sampler ('JAGS') software. In addition, the BACCT package evaluates user-specified decision rules by computing the type-I error/power, or probability of correct go/no-go decision at interim look. The evaluation can be presented numerically or graphically. Users need to have JAGS 4.0.0 or newer installed due to a compatibility issue with rjags package. Currently, the package implements the BAC method for binary outcome only. Support for continuous and survival endpoints will be added in future releases. We would like to thank AbbVie's Statistical Innovation group and Clinical Statistics group for their support in developing the BACCT package.
In ancient Chinese mythology, Bai Ze is a divine creature that knows the needs of everything. baizer provides data processing functions frequently used by the author. Hope this package also knows what you want!
Used for Bayesian mediation analysis based on Bayesian additive Regression Trees (BART). The analysis method is described in Yu and Li (2025) "Mediation Analysis with Bayesian Additive Regression Trees", submitted for publication.
This package provides methods for the binarization of one-dimensional data and some visualization functions.
Survey systems and other third-party data sources commonly use non-standard representations of logical values when it comes to qualitative data - "Yes", "No" and "N/A", say. batman is a package designed to seamlessly convert these into logicals. It is highly localised, and contains equivalents to boolean values in languages including German, French, Spanish, Italian, Turkish, Chinese and Polish.
Package BHMSMAfMRI performs Bayesian hierarchical multi-subject multiscale analysis of fMRI data as described in Sanyal & Ferreira (2012) <DOI:10.1016/j.neuroimage.2012.08.041>, or other multiscale data, using wavelet-based prior that borrows strength across subjects and provides posterior smoothed images of the effect sizes and samples from the posterior distribution.
Fits novel models for the conditional relative risk, risk difference and odds ratio <doi:10.1080/01621459.2016.1192546>.
Time series analysis, (dis)aggregation and manipulation, e.g. time series extension, merge, projection, lag, lead, delta, moving and cumulative average and product, selection by index, date and year-period, conversion to daily, monthly, quarterly, (semi)annually. Simultaneous equation models definition, estimation, simulation and forecasting with coefficient restrictions, error autocorrelation, exogenization, add-factors, impact and interim multipliers analysis, conditional equation evaluation, rational expectations, endogenous targeting and model renormalization, structural stability, stochastic simulation and forecast, optimal control, by A. Luciani (2022) <doi:10.13140/RG.2.2.31160.83202>.
Various algorithms for segmentation of 2D and 3D images, such as computed tomography and satellite remote sensing. This package implements Bayesian image analysis using the hidden Potts model with external field prior of Moores et al. (2015) <doi:10.1016/j.csda.2014.12.001>. Latent labels are sampled using chequerboard updating or Swendsen-Wang. Algorithms for the smoothing parameter include pseudolikelihood, path sampling, the exchange algorithm, approximate Bayesian computation (ABC-MCMC and ABC-SMC), and the parametric functional approximate Bayesian (PFAB) algorithm. Refer to Moores, Pettitt & Mengersen (2020) <doi:10.1007/978-3-030-42553-1_6> for an overview and also to <doi:10.1007/s11222-014-9525-6> and <doi:10.1214/18-BA1130> for further details of specific algorithms.
Bootstraps and imputes incomplete datasets. Then performs inference on estimates obtained from analysing the imputed datasets as proposed by von Hippel and Bartlett (2021) <doi:10.1214/20-STS793>.
This package provides functions to prepare tidy objects from estimated models via BVAR (see Kuschnig & Vashold, 2019 <doi:10.13140/RG.2.2.25541.60643>) and visualisation thereof. Bridges the gap between estimating models with BVAR and plotting the results in a more sophisticated way with ggplot2 as well as passing them on in a tidy format.
Bayesian analysis for stochastic extensions of non-linear dynamic systems using advanced computational algorithms. Described in Bouranis, L., Demiris, N., Kalogeropoulos, K., and Ntzoufras, I. (2022) <doi:10.48550/arXiv.2211.15229>.
This package provides a suite of functions for finance, including the estimation of variance matrices via a statistical factor model or Ledoit-Wolf shrinkage.
This package provides methods for the binarization and trinarization of one-dimensional data and some visualization functions.
This package provides functions to get and download city bike data from the website and API service of each city bike service in Norway. The package aims to reduce time spent on getting Norwegian city bike data, and lower barriers to start analyzing it. The data is retrieved from Oslo City Bike, Bergen City Bike, and Trondheim City Bike. The data is made available under NLOD 2.0 <https://data.norge.no/nlod/en/2.0>.