Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a client for the Base Adresses Nationale ('BAN') API, which allows to (batch) geocode and reverse-geocode French addresses. For more information about the BAN and its API, please see <https://adresse.data.gouv.fr/outils/api-doc/adresse>.
Fit computational and measurement models using full Bayesian inference. The package provides a simple and accessible interface by translating complex domain-specific models into brms syntax, a powerful and flexible framework for fitting Bayesian regression models using Stan'. The package is designed so that users can easily apply state-of-the-art models in various research fields, and so that researchers can use it as a new model development framework. References: Frischkorn and Popov (2023) <doi:10.31234/osf.io/umt57>.
This package provides a Bayesian framework to estimate the Student's t-distribution's degrees of freedom is developed. Markov Chain Monte Carlo sampling routines are developed as in <doi:10.3390/axioms11090462> to sample from the posterior distribution of the degrees of freedom. A random walk Metropolis algorithm is used for sampling when Jeffrey's and Gamma priors are endowed upon the degrees of freedom. In addition, the Metropolis-adjusted Langevin algorithm for sampling is used under the Jeffrey's prior specification. The Log-normal prior over the degrees of freedom is posed as a viable choice with comparable performance in simulations and real-data application, against other prior choices, where an Elliptical Slice Sampler is used to sample from the concerned posterior.
The calculator computes bifactor indices such as explained common variance (ECV), hierarchical Omega (OmegaH), percentage of uncontaminated correlations (PUC), item explained common variance (I-ECV), and more. This package is an R version of the Excel based Bifactor Indices Calculator (Dueber, 2017) <doi:10.13023/edp.tool.01> with added convenience features for directly utilizing output from several programs that can fit confirmatory factor analysis or item response models.
Developed for the following tasks. 1- Simulating and computing the maximum likelihood estimator for the Birnbaum-Saunders (BS) distribution, 2- Computing the Bayesian estimator for the parameters of the BS distribution based on reference prior proposed by Xu and Tang (2010) <doi:10.1016/j.csda.2009.08.004> and conjugate prior. 3- Computing the Bayesian estimator for the BS distribution based on conjugate prior. 4- Computing the Bayesian estimator for the BS distribution based on Jeffrey prior given by Achcar (1993) <doi:10.1016/0167-9473(93)90170-X> 5- Computing the Bayesian estimator for the BS distribution under progressive type-II censoring scheme.
Collection of procedures to perform Bayesian analysis on a variety of factor models. Currently, it includes: "Bayesian Exploratory Factor Analysis" (befa) from G. Conti, S. Frühwirth-Schnatter, J.J. Heckman, R. Piatek (2014) <doi:10.1016/j.jeconom.2014.06.008>, an approach to dedicated factor analysis with stochastic search on the structure of the factor loading matrix. The number of latent factors, as well as the allocation of the manifest variables to the factors, are not fixed a priori but determined during MCMC sampling.
Compute bounds for the treatment effect after adjusting for the presence of omitted variables in linear econometric models, according to the method of Basu (2022) <arXiv:2203.12431>. You supply the data, identify the outcome and treatment variables and additional regressors. The main functions will compute bounds for the bias-adjusted treatment effect. Many plot functions allow easy visualization of results.
This package contains several plotting functions such as barplots, scatterplots, heatmaps, as well as functions to combine plots and assist in the creation of these plots. These functions will give users great ease of use and customization options in broad use for biomedical applications, as well as general purpose plotting. Each of the functions also provides valid default settings to make plotting data more efficient and producing high quality plots with standard colour schemes simpler. All functions within this package are capable of producing plots that are of the quality to be presented in scientific publications and journals. P'ng et al.; BPG: Seamless, automated and interactive visualization of scientific data; BMC Bioinformatics 2019 <doi:10.1186/s12859-019-2610-2>.
This package provides a method for the Bayesian functional linear regression model (scalar-on-function), including two estimators of the coefficient function and an estimator of its support. A representation of the posterior distribution is also available. Grollemund P-M., Abraham C., Baragatti M., Pudlo P. (2019) <doi:10.1214/18-BA1095>.
This package implements a class and methods to work with sets, doing intersection, union, complementary sets, power sets, cartesian product and other set operations in a "tidy" way. These set operations are available for both classical sets and fuzzy sets. Import sets from several formats or from other several data structures.
Fits Cox model via stochastic gradient descent. This implementation avoids computational instability of the standard Cox Model when dealing large datasets. Furthermore, it scales up with large datasets that do not fit the memory. It also handles large sparse datasets using proximal stochastic gradient descent algorithm. For more details about the method, please see Aliasghar Tarkhan and Noah Simon (2020) <arXiv:2003.00116v2>.
It provides access to and information about the most important Brazilian economic time series - from the Getulio Vargas Foundation <http://portal.fgv.br/en>, the Central Bank of Brazil <http://www.bcb.gov.br> and the Brazilian Institute of Geography and Statistics <http://www.ibge.gov.br>. It also presents tools for managing, analysing (e.g. generating dynamic reports with a complete analysis of a series) and exporting these time series.
This package provides an approach which is based on the methodology of the Burden of Communicable Diseases in Europe (BCoDE) and can be used for large and small samples such as individual countries. The Burden of Healthcare-Associated Infections (BHAI) is estimated in disability-adjusted life years, number of infections as well as number of deaths per year. Results can be visualized with various plotting functions and exported into tables.
This package provides some tools for developing and validating prediction models, estimate expected survival of patients and visualize them graphically. Most of the implemented methods are based on penalized regressions such as: the lasso (Tibshirani R (1996)), the elastic net (Zou H et al. (2005) <doi:10.1111/j.1467-9868.2005.00503.x>), the adaptive lasso (Zou H (2006) <doi:10.1198/016214506000000735>), the stability selection (Meinshausen N et al. (2010) <doi:10.1111/j.1467-9868.2010.00740.x>), some extensions of the lasso (Ternes et al. (2016) <doi:10.1002/sim.6927>), some methods for the interaction setting (Ternes N et al. (2016) <doi:10.1002/bimj.201500234>), or others. A function generating simulated survival data set is also provided.
Enables a user to consume the BambooHR API endpoints using R. The actual URL of the API will depend on your company domain, and will be handled by the package automatically once you setup the config file. The API documentation can be found here <https://documentation.bamboohr.com/docs>.
Executes BASIC programs from the 1970s, for historical and educational purposes. This enables famous examples of early machine learning, artificial intelligence, natural language processing, cellular automata, and so on, to be run in their original form.
Building on the docking layout manager provided by dockViewR', this provides a flexible front-end to blockr.core'. It provides an extension mechanism which allows for providing means to manipulate a board object via panel-based user interface components.
Utility functions, datasets and extended examples for survival analysis. This extends a range of other packages, some simple wrappers for time-to-event analyses, datasets, and extensive examples in HTML with R scripts. The package also supports the course Biostatistics III entitled "Survival analysis for epidemiologists in R".
This package provides a Bayesian model averaging approach to causal effect estimation based on the BCEE algorithm. Currently supports binary or continuous exposures and outcomes. For more details, see Talbot et al. (2015) <doi:10.1515/jci-2014-0035> Talbot and Beaudoin (2022) <doi:10.1515/jci-2021-0023>.
This package implements the Bayesian Augmented Control (BAC, a.k.a. Bayesian historical data borrowing) method under clinical trial setting by calling Just Another Gibbs Sampler ('JAGS') software. In addition, the BACCT package evaluates user-specified decision rules by computing the type-I error/power, or probability of correct go/no-go decision at interim look. The evaluation can be presented numerically or graphically. Users need to have JAGS 4.0.0 or newer installed due to a compatibility issue with rjags package. Currently, the package implements the BAC method for binary outcome only. Support for continuous and survival endpoints will be added in future releases. We would like to thank AbbVie's Statistical Innovation group and Clinical Statistics group for their support in developing the BACCT package.
This package provides a Metropolis-coupled Markov chain Monte Carlo sampler, post-processing and parameter estimation functions, and plotting utilities for the generalized graded unfolding model of Roberts, Donoghue, and Laughlin (2000) <doi:10.1177/01466216000241001>.
Modelling of population growth under static and dynamic environmental conditions. Includes functions for model fitting and making prediction under isothermal and dynamic conditions. The methods (algorithms & models) are based on predictive microbiology (See Perez-Rodriguez and Valero (2012, ISBN:978-1-4614-5519-6)).
Extend lasso and elastic-net model fitting for large data sets that cannot be loaded into memory. Designed to be more memory- and computation-efficient than existing lasso-fitting packages like glmnet and ncvreg', thus allowing the user to analyze big data with limited RAM <doi:10.32614/RJ-2021-001>.
An interface to the Briq API <https://briq.github.io>. Briq is a tool that aims to promote employee engagement by helping employees recognize and reward each other. Employees can praise and thank one another (for achieving a company goal, for example) by giving virtual credits (known as briqs or bqs') that can be redeemed for various rewards. The Briq API lets you create, read, update and delete users, user groups, transactions and messages. This package provides functions that simplify getting the users, user groups and transactions of your organization into R.