Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Calculate robust measures of effect sizes using the bootstrap.
The goal of the package is to provide an easy-to-use method for estimating degrees of relatedness (up to the second degree) for extreme low-coverage data. The package also allows users to quantify and visualise the level of confidence in the estimated degrees of relatedness.
This package performs goodness of fit test for the Birnbaum-Saunders distribution and provides the maximum likelihood estimate and the method-of-moments estimate. For more details, see Park and Wang (2013) <arXiv:2308.10150>. This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (No. 2022R1A2C1091319, RS-2023-00242528).
Buckley-James regression for right-censoring survival data with high-dimensional covariates. Implementations for survival data include boosting with componentwise linear least squares, componentwise smoothing splines, regression trees and MARS. Other high-dimensional tools include penalized regression for survival data. See Wang and Wang (2010) <doi:10.2202/1544-6115.1550>.
Calculates business duration between two dates. This excluding weekends, public holidays and non-business hours.
Package providing a number of functions for working with Two- and Four-parameter Beta and closely related distributions (i.e., the Gamma- Binomial-, and Beta-Binomial distributions). Includes, among other things: - d/p/q/r functions for Four-Parameter Beta distributions and Generalized "Binomial" (continuous) distributions, and d/p/r- functions for Beta- Binomial distributions. - d/p/q/r functions for Two- and Four-Parameter Beta distributions parameterized in terms of their means and variances rather than their shape-parameters. - Moment generating functions for Binomial distributions, Beta-Binomial distributions, and observed value distributions. - Functions for estimating classification accuracy and consistency, making use of the Classical Test-Theory based Livingston and Lewis (L&L) and Hanson and Brennan approaches. A shiny app is available, providing a GUI for the L&L approach when used for binary classifications. For url to the app, see documentation for the LL.CA() function. Livingston and Lewis (1995) <doi:10.1111/j.1745-3984.1995.tb00462.x>. Lord (1965) <doi:10.1007/BF02289490>. Hanson (1991) <https://files.eric.ed.gov/fulltext/ED344945.pdf>.
This package provides an efficient and robust implementation for estimating marginal Hazard Ratio (HR) and Restricted Mean Survival Time (RMST) with covariate adjustment using Daniel et al. (2021) <doi:10.1002/bimj.201900297> and Karrison et al. (2018) <doi:10.1177/1740774518759281>.
Analytically calculates the operating characteristics of single-stage and two-stage basket trials with equal sample sizes using the power prior design by Baumann et al. (2024) <doi:10.48550/arXiv.2309.06988> and the design by Fujikawa et al. (2020) <doi:10.1002/bimj.201800404>.
Applies Beta Control Charts to defined values. The Beta Chart presents control limits based on the Beta probability distribution, making it suitable for monitoring fraction data from a Binomial distribution as a replacement for p-Charts. The Beta Chart has been applied in three real studies and compared with control limits from three different schemes. The comparative analysis showed that: (i) the Beta approximation to the Binomial distribution is more appropriate for values confined within the [0, 1] interval; and (ii) the proposed charts are more sensitive to the average run length (ARL) in both in-control and out-of-control process monitoring. Overall, the Beta Charts outperform the Shewhart control charts in monitoring fraction data. For more details, see à ngelo Márcio Oliveira Santâ Anna and Carla Schwengber ten Caten (2012) <doi:10.1016/j.eswa.2012.02.146>.
This package provides probability computation, data generation, and model estimation for fully-visible Boltzmann machines. It follows the methods described in Nguyen and Wood (2016a) <doi:10.1162/NECO_a_00813> and Nguyen and Wood (2016b) <doi:10.1109/TNNLS.2015.2425898>.
Is used to simulate and fit biological geometries. biogeom incorporates several novel universal parametric equations that can generate the profiles of bird eggs, flowers, linear and lanceolate leaves, seeds, starfish, and tree-rings (Gielis (2003) <doi:10.3732/ajb.90.3.333>; Shi et al. (2020) <doi:10.3390/sym12040645>), three growth-rate curves representing the ontogenetic growth trajectories of animals and plants against time, and the axially symmetrical and integral forms of all these functions (Shi et al. (2017) <doi:10.1016/j.ecolmodel.2017.01.012>; Shi et al. (2021) <doi:10.3390/sym13081524>). The optimization method proposed by Nelder and Mead (1965) <doi:10.1093/comjnl/7.4.308> was used to estimate model parameters. biogeom includes several real data sets of the boundary coordinates of natural shapes, including avian eggs, fruit, lanceolate and ovate leaves, tree rings, seeds, and sea stars,and can be potentially applied to other natural shapes. biogeom can quantify the conspecific or interspecific similarity of natural outlines, and provides information with important ecological and evolutionary implications for the growth and form of living organisms. Please see Shi et al. (2022) <doi:10.1111/nyas.14862> for details.
Creating spatially or environmentally separated folds for cross-validation to provide a robust error estimation in spatially structured environments; Investigating and visualising the effective range of spatial autocorrelation in continuous raster covariates and point samples to find an initial realistic distance band to separate training and testing datasets spatially described in Valavi, R. et al. (2019) <doi:10.1111/2041-210X.13107>.
Creating, rendering and writing BPMN diagrams <https://www.bpmn.org/>. Functionalities can be used to visualize and export BPMN diagrams created using the pm4py and bupaRminer packages. Part of the bupaR ecosystem.
This package provides tools for Dating Business Cycles using Harding-Pagan (Quarterly Bry-Boschan) method and various plotting features.
Typically, models in R exist in memory and can be saved via regular R serialization. However, some models store information in locations that cannot be saved using R serialization alone. The goal of bundle is to provide a common interface to capture this information, situate it within a portable object, and restore it for use in new settings.
Decomposition of time series into trend, seasonal, and remainder components with methods for detecting and characterizing abrupt changes within the trend and seasonal components. BFAST can be used to analyze different types of satellite image time series and can be applied to other disciplines dealing with seasonal or non-seasonal time series, such as hydrology, climatology, and econometrics. The algorithm can be extended to label detected changes with information on the parameters of the fitted piecewise linear models. BFAST monitoring functionality is described in Verbesselt et al. (2010) <doi:10.1016/j.rse.2009.08.014>. BFAST monitor provides functionality to detect disturbance in near real-time based on BFAST'- type models, and is described in Verbesselt et al. (2012) <doi:10.1016/j.rse.2012.02.022>. BFAST Lite approach is a flexible approach that handles missing data without interpolation, and will be described in an upcoming paper. Furthermore, different models can now be used to fit the time series data and detect structural changes (breaks).
Bagging bandwidth selection methods for the Parzen-Rosenblatt and Nadaraya-Watson estimators. These bandwidth selectors can achieve greater statistical precision than their non-bagged counterparts while being computationally fast. See Barreiro-Ures et al. (2020) <doi:10.1093/biomet/asaa092> and Barreiro-Ures et al. (2021) <doi:10.48550/arXiv.2105.04134>.
Bayesian inferences on nonparametric regression via Gaussian Processes with a modified exponential square kernel using a basis expansion approach.
The kernelSmoothing() function allows you to square and smooth geolocated data. It calculates a classical kernel smoothing (conservative) or a geographically weighted median. There are four major call modes of the function. The first call mode is kernelSmoothing(obs, epsg, cellsize, bandwidth) for a classical kernel smoothing and automatic grid. The second call mode is kernelSmoothing(obs, epsg, cellsize, bandwidth, quantiles) for a geographically weighted median and automatic grid. The third call mode is kernelSmoothing(obs, epsg, cellsize, bandwidth, centroids) for a classical kernel smoothing and user grid. The fourth call mode is kernelSmoothing(obs, epsg, cellsize, bandwidth, quantiles, centroids) for a geographically weighted median and user grid. Geographically weighted summary statistics : a framework for localised exploratory data analysis, C.Brunsdon & al., in Computers, Environment and Urban Systems C.Brunsdon & al. (2002) <doi:10.1016/S0198-9715(01)00009-6>, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition, Diggle, pp. 83-86, (2003) <doi:10.1080/13658816.2014.937718>.
This package provides a wrapper to allow users to download Bus Open Data Service BODS transport information from the API (<https://www.bus-data.dft.gov.uk/>). This includes timetable and fare metadata (including links for full datasets), timetable data at line level, and real-time location data.
This package implements the efficient estimator of bid-ask spreads from open, high, low, and close prices described in Ardia, Guidotti, & Kroencke (JFE, 2024) <doi:10.1016/j.jfineco.2024.103916>. It also provides an implementation of the estimators described in Roll (JF, 1984) <doi:10.1111/j.1540-6261.1984.tb03897.x>, Corwin & Schultz (JF, 2012) <doi:10.1111/j.1540-6261.2012.01729.x>, and Abdi & Ranaldo (RFS, 2017) <doi:10.1093/rfs/hhx084>.
This package provides a set of functions for doing analysis of A/B split test data and web metrics in general.
Posterior distribution in the Black-Litterman model is computed from a prior distribution given in the form of a time series of asset returns and a continuous distribution of views provided by the user as an external function.
These functions provide a convenient interface for downloading data from the U.S. Bureau of Labor Statistics <https://www.bls.gov>. The functions in this package utilize flat files produced by the Bureau of Labor Statistics, which contain full series history. These files include employment, unemployment, wages, prices, industry and occupational data at a national, state, and sub-state level, depending on the series. Individual functions are included for those programs which have data available at the state level. The core functions provide direct access to the Current Employment Statistics (CES) <https://www.bls.gov/ces/>, Local Area Unemployment Statistics (LAUS) <https://www.bls.gov/lau/>, Occupational Employment and Wage Statistics (OEWS) <https://www.bls.gov/oes/> and Alternative Measures of Labor Underutilization (SALT) <https://www.bls.gov/lau/stalt.htm> data produced by the Bureau of Labor Statistics.