Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computes a confidence interval for a specified linear combination of the regression parameters in a linear regression model with iid normal errors with known variance when there is uncertain prior information that a distinct specified linear combination of the regression parameters takes a given value. This confidence interval, found by numerical nonlinear constrained optimization, has the required minimum coverage and utilizes this uncertain prior information through desirable expected length properties. This confidence interval has the following three practical applications. Firstly, if the error variance has been accurately estimated from previous data then it may be treated as being effectively known. Secondly, for sufficiently large (dimension of the response vector) minus (dimension of regression parameter vector), greater than or equal to 30 (say), if we replace the assumed known value of the error variance by its usual estimator in the formula for the confidence interval then the resulting interval has, to a very good approximation, the same coverage probability and expected length properties as when the error variance is known. Thirdly, some more complicated models can be approximated by the linear regression model with error variance known when certain unknown parameters are replaced by estimates. This confidence interval is described in Mainzer, R. and Kabaila, P. (2019) <doi:10.32614/RJ-2019-026>, and is a member of the family of confidence intervals proposed by Kabaila, P. and Giri, K. (2009) <doi:10.1016/j.jspi.2009.03.018>.
This package provides a collection of common test and item analyses from a classical test theory (CTT) framework. Analyses can be applied to both dichotomous and polytomous data. Functions provide reliability analyses (alpha), item statistics, disctractor analyses, disattenuated correlations, scoring routines, and empirical ICCs.
This package provides a clustered random forest algorithm for fitting random forests for data of independent clusters, that exhibit within cluster dependence. Details of the method can be found in Young and Buehlmann (2025) <doi:10.48550/arXiv.2503.12634>.
Applies the change-in-effect estimate method to assess confounding effects in medical and epidemiological research (Greenland & Pearce (2016) <doi:10.1146/annurev-publhealth-031914-122559> ). It starts with a crude model including only the outcome and exposure variables. At each of the subsequent steps, one variable which creates the largest change among the remaining variables is selected. This process is repeated until all variables have been entered into the model (Wang Z. Stata Journal 2007; 7, Number 2, pp. 183â 196). Currently, the chest package has functions for linear regression, logistic regression, negative binomial regression, Cox proportional hazards model and conditional logistic regression.
This package provides a significant pattern mining-based toolbox for region-based genome-wide association studies and higher-order epistasis analyses, implementing the methods described in Llinares-López et al. (2017) <doi:10.1093/bioinformatics/btx071>.
Various cladogenesis-related calculations that are slow in pure R are implemented in C++ with Rcpp. These include the calculation of the probability of various scenarios for the inheritance of geographic range at the divergence events on a phylogenetic tree, and other calculations necessary for models which are not continuous-time markov chains (CTMC), but where change instead occurs instantaneously at speciation events. Typically these models must assess the probability of every possible combination of (ancestor state, left descendent state, right descendent state). This means that there are up to (# of states)^3 combinations to investigate, and in biogeographical models, there can easily be hundreds of states, so calculation time becomes an issue. C++ implementation plus clever tricks (many combinations can be eliminated a priori) can greatly speed the computation time over naive R implementations. CITATION INFO: This package is the result of my Ph.D. research, please cite the package if you use it! Type: citation(package="cladoRcpp") to get the citation information.
Computing, comparing, and demonstrating top informative centrality measures within a network. "CINNA: an R/CRAN package to decipher Central Informative Nodes in Network Analysis" provides a comprehensive overview of the package functionality Ashtiani et al. (2018) <doi:10.1093/bioinformatics/bty819>.
Implementation of Librino, Levorato, and Zorzi (2014) <doi:10.1002/wcm.2305> algorithm for computation of the intersection areas of an arbitrary number of circles.
The reliability of assessment tools is a crucial aspect of monitoring student performance in various educational settings. It ensures that the assessment outcomes accurately reflect a student's true level of performance. However, when assessments are combined, determining composite reliability can be challenging, especially for naturalistic and unbalanced datasets. This package provides an easy-to-use solution for calculating composite reliability for different assessment types. It allows for the inclusion of weight per assessment type and produces extensive G- and D-study results with graphical interpretations. Overall, our approach enhances the reliability of composite assessments, making it suitable for various education contexts.
This package implements Monte Carlo conditional inference for the parameters of a linear nonnormal regression model.
One degree of freedom contrasts for lm', glm', gls', and geese objects.
Calculate with spectral properties of light sources, materials, cameras, eyes, and scanners. Build complex systems from simpler parts using a spectral product algebra. For light sources, compute CCT, CRI, SSI, and IES TM-30 reports. For object colors, compute optimal colors and Logvinenko coordinates. Work with the standard CIE illuminants and color matching functions, and read spectra from text files, including CGATS files. Estimate a spectrum from its response. A user guide and 9 vignettes are included.
An algorithm of optimal subset selection, related to Covariance matrices, observation matrices and Response vectors (COR) to select the optimal subsets in distributed estimation. The philosophy of the package is described in Guo G. (2024) <doi:10.1007/s11222-024-10471-z>.
Systematically Run R checks against multiple packages. Checks are run in parallel with strategies to minimize dependency installation. Provides out of the box interface for running reverse dependency check.
Tables summarizing clinical trial results are often complex and require detailed tailoring prior to submission to a health authority. The crane package supplements the functionality of the gtsummary package for creating these often highly bespoke tables in the pharmaceutical industry.
This package provides four variants of three-way correspondence analysis (ca): three-way symmetrical ca, three-way non-symmetrical ca, three-way ordered symmetrical ca and three-way ordered non-symmetrical ca.
Joint and Individual Variation Explained (JIVE) is a method for decomposing multiple datasets obtained on the same subjects into shared structure, structure unique to each dataset, and noise. The two most common implementations are R.JIVE, an iterative approach, and AJIVE, which uses principal angle analysis. JIVE estimates subspaces but interpreting these subspaces can be challenging with AJIVE or R.JIVE. We expand upon insights into AJIVE as a canonical correlation analysis (CCA) of principal component scores. This reformulation, which we call CJIVE, 1) provides an ordering of joint components by the degree of correlation between corresponding canonical variables; 2) uses a computationally efficient permutation test for the number of joint components, which provides a p-value for each component; and 3) can be used to predict subject scores for out-of-sample observations. Please cite the following article when utilizing this package: Murden, R., Zhang, Z., Guo, Y., & Risk, B. (2022) <doi:10.3389/fnins.2022.969510>.
Read tables chunk by chunk using a C++ backend and a simple R interface.
This package creates a common framework for organizing, naming, and gathering population, age, race, and ethnicity data from the Census Bureau. Accesses the API <https://www.census.gov/data/developers/data-sets.html>. Provides tools for adding information to existing data to line up with Census data.
Write executable specifications in a natural language that describes how your code should behave. Write specifications in feature files using Gherkin language and execute them using functions implemented in R. Use them as an extension to your testthat tests to provide a high level description of how your code works.
This package provides functions to produce some circular plots for circular data, in a height- or area-proportional manner. They include bar plots, smooth density plots, stacked dot plots, histograms, multi-class stacked smooth density plots, and multi-class stacked histograms.
This package provides functions to calculate the relative crystallinity of starch by X-ray Diffraction (XRD) and Infrared Spectroscopy (FTIR). Starch is biosynthesized by plants in the form of granules semicrystalline. For XRD, the relative crystallinity is obtained by separating the crystalline peaks from the amorphous scattering region. For FTIR, the relative crystallinity is achieved by setting of a Gaussian holocrystalline-peak in the 800-1300 cm-1 region of FTIR spectrum of starch which is divided into amorphous region and crystalline region. The relative crystallinity of native starch granules varies from 14 of 45 percent. This package was supported by FONDECYT 3150630 and CIPA Conicyt-Regional R08C1002 is gratefully acknowledged.
Analyze data from a crossover design using generalized estimation equations (GEE), including carryover effects and various correlation structures based on the Kronecker product. It contains functions for semiparametric estimates of carry-over effects in repeated measures and allows estimation of complex carry-over effects. Related work includes: a) Cruz N.A., Melo O.O., Martinez C.A. (2023). "CrossCarry: An R package for the analysis of data from a crossover design with GEE". <doi:10.48550/arXiv.2304.02440>. b) Cruz N.A., Melo O.O., Martinez C.A. (2023). "A correlation structure for the analysis of Gaussian and non-Gaussian responses in crossover experimental designs with repeated measures". <doi:10.1007/s00362-022-01391-z> and c) Cruz N.A., Melo O.O., Martinez C.A. (2023). "Semiparametric generalized estimating equations for repeated measurements in cross-over designs". <doi:10.1177/09622802231158736>.
This package provides a collection of data sets for teaching cluster analysis.