Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools to analyze binary graph objects.
Bayesian analysis for exponential random graph models using advanced computational algorithms. More information can be found at: <https://acaimo.github.io/Bergm/>.
Bayesian MCPMod (Fleischer et al. (2022) <doi:10.1002/pst.2193>) is an innovative method that improves the traditional MCPMod by systematically incorporating historical data, such as previous placebo group data. This R package offers functions for simulating, analyzing, and evaluating Bayesian MCPMod trials with normally distributed endpoints. It enables the assessment of trial designs incorporating historical data across various true dose-response relationships and sample sizes. Robust mixture prior distributions, such as those derived with the Meta-Analytic-Predictive approach (Schmidli et al. (2014) <doi:10.1111/biom.12242>), can be specified for each dose group. Resulting mixture posterior distributions are used in the Bayesian Multiple Comparison Procedure and modeling steps. The modeling step also includes a weighted model averaging approach (Pinheiro et al. (2014) <doi:10.1002/sim.6052>). Estimated dose-response relationships can be bootstrapped and visualized.
This package provides a way to simulate from the prior distribution of Bayesian trees by Chipman et al. (1998) <DOI:10.2307/2669832>. The prior distribution of Bayesian trees is highly dependent on the design matrix X, therefore using the suggested hyperparameters by Chipman et al. (1998) <DOI:10.2307/2669832> is not recommended and could lead to unexpected prior distribution. This work is part of my master thesis (expected 2016).
It makes the creation of networks from sequences of RNA, with this is done the abstraction of characteristics of these networks with a methodology of threshold for the purpose of making a classification between the classes of the sequences. There are four data present in the BASiNET package, "sequences", "sequences2", "sequences-predict" and "sequences2-predict" with 11, 10, 11 and 11 sequences respectively. These sequences were taken from the data set used in the article (LI, Aimin; ZHANG, Junying; ZHOU, Zhongyin, 2014) <doi:10.1186/1471-2105-15-311>, these sequences are used to run examples. The BASiNET was published on Nucleic Acids Research, (ITO, Eric; KATAHIRA, Isaque; VICENTE, Fábio; PEREIRA, Felipe; LOPES, Fabrà cio, 2018) <doi:10.1093/nar/gky462>.
Bootstrap resampling methods have been widely studied in the context of survey data. This package implements various bootstrap resampling techniques tailored for survey data, with a focus on stratified simple random sampling and stratified two-stage cluster sampling. It provides tools for precise and consistent bootstrap variance estimation for population totals, means, and quartiles. Additionally, it enables easy generation of bootstrap samples for in-depth analysis.
This package provides functions for blind source separation over multivariate spatial data, and useful statistics for evaluating performance of estimation on mixing matrix. BSSoverSpace is based on an eigen analysis of a positive definite matrix defined in terms of multiple normalized spatial local covariance matrices, and thus can handle moderately high-dimensional random fields. This package is an implementation of the method described in Zhang, Hao and Yao (2022)<arXiv:2201.02023>.
Allows the user to manage easily R packages removal and installation. It offers many functions to display installed packages according to specific dates and removes them if needed. The user is always prompted when running the removal functions in order to confirm the required action. It also provides functions that will install Github starred R packages whether available on CRAN or not.
Fetches monthly financial tables and banking sector data published on the official website of the Banking Regulation and Supervision Agency of Turkey and also enables you to save it as an Excel file. It is a R implementation of the Python package <https://pypi.org/project/bddkdata/>.
Functionality for reliability estimates. For unidimensional tests: Coefficient alpha, Guttman's lambda-2/-4/-6, the Greatest lower bound and coefficient omega_u ('unidimensional') in a Bayesian and a frequentist version. For multidimensional tests: omega_t (total) and omega_h (hierarchical). The results include confidence and credible intervals, the probability of a coefficient being larger than a cutoff, and a check for the factor models, necessary for the omega coefficients. The method for the Bayesian unidimensional estimates, except for omega_u, is sampling from the posterior inverse Wishart for the covariance matrix based measures (see Murphy', 2007, <https://groups.seas.harvard.edu/courses/cs281/papers/murphy-2007.pdf>. The Bayesian omegas (u, t, and h) are obtained by Gibbs sampling from the conditional posterior distributions of (1) the single factor model, (2) the second-order factor model, (3) the bi-factor model, (4) the correlated factor model ('Lee', 2007, <doi:10.1002/9780470024737>).
Bootstrap based goodness-of-fit tests. It allows to perform rigorous statistical tests to check if a chosen model family is correct based on the marked empirical process. The implemented algorithms are described in (Dikta and Scheer (2021) <doi:10.1007/978-3-030-73480-0>) and can be applied to generalized linear models without any further implementation effort. As far as certain linearity conditions are fulfilled the resampling scheme are also applicable beyond generalized linear models. This is reflected in the software architecture which allows to reuse the resampling scheme by implementing only certain interfaces for models that are not supported natively by the package.
An advanced implementation of Bayesian Additive Regression Trees with expanded features for data analysis and visualization.
Broadly useful convenient and efficient R functions that bring users concise and elegant R data analyses. This package includes easy-to-use functions for (1) basic R programming (e.g., set working directory to the path of currently opened file; import/export data from/to files in any format; print tables to Microsoft Word); (2) multivariate computation (e.g., compute scale sums/means/... with reverse scoring); (3) reliability analyses and factor analyses; (4) descriptive statistics and correlation analyses; (5) t-test, multi-factor analysis of variance (ANOVA), simple-effect analysis, and post-hoc multiple comparison; (6) tidy report of statistical models (to R Console and Microsoft Word); (7) mediation and moderation analyses (PROCESS); and (8) additional toolbox for statistics and graphics.
Prognostic Enrichment is a clinical trial strategy of evaluating an intervention in a patient population with a higher rate of the unwanted event than the broader patient population (R. Temple (2010) <DOI:10.1038/clpt.2010.233>). A higher event rate translates to a lower sample size for the clinical trial, which can have both practical and ethical advantages. This package is a tool to help evaluate biomarkers for prognostic enrichment of clinical trials.
This package implements bidirectional two-stage least squares (Bi-TSLS) estimation for identifying bidirectional causal effects between two variables in the presence of unmeasured confounding. The method uses proxy variables (negative control exposure and outcome) along with at least one covariate to handle confounding.
Simulating synthetic clumped isotope dataset, fitting linear regression models under Bayesian and non-Bayesian frameworks, and generating temperature reconstructions for the same two approaches. Please note that models implemented in this package are described in Roman-Palacios et al. (2021) <doi:10.1002/essoar.10507995.1>.
It computes betas-select, coefficients after standardization in structural equation models and regression models, standardizing only selected variables. Supports models with moderation, with product terms formed after standardization. It also offers confidence intervals that account for standardization, including bootstrap confidence intervals as proposed by Cheung et al. (2022) <doi:10.1037/hea0001188>.
This package provides functions for training extreme gradient boosting model using propensity score A-learning and weight-learning methods. For further details, see Liu et al. (2024) <doi:10.1093/bioinformatics/btae592>.
This package performs unadjusted Bayesian survival analysis for right censored time-to-event data. The main function, BayesSurv(), computes the posterior mean and a credible band for the survival function and for the cumulative hazard, as well as the posterior mean for the hazard, starting from a piecewise exponential (histogram) prior with Gamma distributed heights that are either independent, or have a Markovian dependence structure. A function, PlotBayesSurv(), is provided to easily create plots of the posterior means of the hazard, cumulative hazard and survival function, with a credible band accompanying the latter two. The priors and samplers are described in more detail in Castillo and Van der Pas (2020) "Multiscale Bayesian survival analysis" <arXiv:2005.02889>. In that paper it is also shown that the credible bands for the survival function and the cumulative hazard can be considered confidence bands (under mild conditions) and thus offer reliable uncertainty quantification.
The backtest package provides facilities for exploring portfolio-based conjectures about financial instruments (stocks, bonds, swaps, options, et cetera).
Maximum likelihood estimation of copula-based zero-inflated (and non-inflated) Poisson and negative binomial count models, based on the article <doi:10.18637/jss.v109.i01>. Supports Frank and Gaussian copulas. Allows for mixed margins (e.g., one margin Poisson, the other zero-inflated negative binomial), and several marginal link functions. Built-in methods for publication-quality tables using texreg', post-estimation diagnostics using DHARMa', and testing for marginal zero-modification via <doi:10.1177/0962280217749991>. For information on copula regression for count data, see Genest and Nešlehová (2007) <doi:10.1017/S0515036100014963> as well as Nikoloulopoulos (2013) <doi:10.1007/978-3-642-35407-6_11>. For information on zero-inflated count regression generally, see Lambert (1992) <https://www.jstor.org/stable/1269547>. The author acknowledges support by NSF DMS-1925119 and DMS-212324.
This package provides a client for cryptocurrency exchange BitMEX <https://www.bitmex.com/> including the ability to obtain historic trade data and place, edit and cancel orders. BitMEX's Testnet and live API are both supported.
Derived from the work of Kruschke (2015, <ISBN:9780124058880>), the present package aims to provide a framework for conducting Bayesian analysis using Markov chain Monte Carlo (MCMC) sampling utilizing the Just Another Gibbs Sampler ('JAGS', Plummer, 2003, <https://mcmc-jags.sourceforge.io>). The initial version includes several modules for conducting Bayesian equivalents of chi-squared tests, analysis of variance (ANOVA), multiple (hierarchical) regression, softmax regression, and for fitting data (e.g., structural equation modeling).
Implement in R interactive Circos-like visualizations of genomic data, to map information such as genetic variants, genomic fusions and aberrations to a circular genome, as proposed by the JavaScript library BioCircos.js', based on the JQuery and D3 technologies. The output is by default displayed in stand-alone HTML documents or in the RStudio viewer pane. Moreover it can be integrated in R Markdown documents and Shiny applications.