Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Calculates equitable overload compensation for college instructors based on institutional policies, enrollment thresholds, and regular teaching load limits. Compensation is awarded only for credit hours that exceed the regular load and meet minimum enrollment criteria. When enrollment is below a specified threshold, pay is prorated accordingly. The package prioritizes compensation from high-enrollment courses, or optionally from low-enrollment courses for fairness, depending on user-defined strategy. Includes tools for flexible policy settings, instructor filtering, and produces clean, audit-ready summary tables suitable for payroll and administrative reporting.
Many correlation coefficient related functions are offered, such as correlations, partial correlations and hypothesis testing using asymptotic tests and computer intensive methods (bootstrap and permutation). References include Mardia K.V., Kent J.T. and Bibby J.M. (1979). "Multivariate Analysis". ISBN: 978-0124712522. London: Academic Press and Owen A. B. (2001). "Empirical likelihood". Chapman and Hall/CRC Press. ISBN: 9781584880714.
Various utilities for the complex multivariate Gaussian distribution and complex Gaussian processes.
This package provides functions for identification and transportation of causal effects. Provides a conditional causal effect identification algorithm (IDC) by Shpitser, I. and Pearl, J. (2006) <http://ftp.cs.ucla.edu/pub/stat_ser/r329-uai.pdf>, an algorithm for transportability from multiple domains with limited experiments by Bareinboim, E. and Pearl, J. (2014) <http://ftp.cs.ucla.edu/pub/stat_ser/r443.pdf>, and a selection bias recovery algorithm by Bareinboim, E. and Tian, J. (2015) <http://ftp.cs.ucla.edu/pub/stat_ser/r445.pdf>. All of the previously mentioned algorithms are based on a causal effect identification algorithm by Tian , J. (2002) <http://ftp.cs.ucla.edu/pub/stat_ser/r309.pdf>.
This package provides a minimum set of functions to perform compositional data analysis using the log-ratio approach introduced by John Aitchison (1982). Main functions have been implemented in c++ for better performance.
This package provides a suite of functions for rapid and flexible analysis of codon usage bias. It provides in-depth analysis at the codon level, including relative synonymous codon usage (RSCU), tRNA weight calculations, machine learning predictions for optimal or preferred codons, and visualization of codon-anticodon pairing. Additionally, it can calculate various gene- specific codon indices such as codon adaptation index (CAI), effective number of codons (ENC), fraction of optimal codons (Fop), tRNA adaptation index (tAI), mean codon stabilization coefficients (CSCg), and GC contents (GC/GC3s/GC4d). It also supports both standard and non-standard genetic code tables found in NCBI, as well as custom genetic code tables.
This package provides a collection of useful helper routines developed by students of the Center for Mathematical Research, Stankin, Moscow.
This package implements Cramer-von Mises Statistics for testing fit to (1) fully specified discrete distributions as described in Choulakian, Lockhart and Stephens (1994) <doi:10.2307/3315828> (2) discrete distributions with unknown parameters that must be estimated from the sample data, see Spinelli & Stephens (1997) <doi:10.2307/3315735> and Lockhart, Spinelli and Stephens (2007) <doi:10.1002/cjs.5550350111> (3) grouped continuous distributions with Unknown Parameters, see Spinelli (2001) <doi:10.2307/3316040>. Maximum likelihood estimation (MLE) is used to estimate the parameters. The package computes the Cramer-von Mises Statistics, Anderson-Darling Statistics and the Watson-Stephens Statistics and their p-values.
Fast application of Continuous Wavelet Transformation ('CWT') on time series with special attention to spectroscopy. It is written using data.table and C++ language and in some functions it is possible to use parallel processing to speed-up the computation over samples. Currently, only the second derivative of a Gaussian wavelet function is implemented.
Explore and normalize American campaign finance data. Created by the Investigative Reporting Workshop to facilitate work on The Accountability Project, an effort to collect public data into a central, standard database that is more easily searched: <https://publicaccountability.org/>.
Frequentist confidence analysis answers the question: How confident are we in a particular treatment effect? This package calculates the frequentist confidence in a treatment effect of interest given observed data, and returns the family of confidence curves associated with that data.
This package provides a set of functions for counterfactual decomposition (cfdecomp). The functions available in this package decompose differences in an outcome attributable to a mediating variable (or sets of mediating variables) between groups based on counterfactual (causal inference) theory. By using Monte Carlo (MC) integration (simulations based on empirical estimates from multivariable models) we provide added flexibility compared to existing (analytical) approaches, at the cost of computational power or time. The added flexibility means that we can decompose difference between groups in any outcome or and with any mediator (any variable type and distribution). See Sudharsanan & Bijlsma (2019) <doi:10.4054/MPIDR-WP-2019-004> for more information.
Assembles two or more gene copies from short-read Next-Generation Sequencing data. Works best when there are only two gene copies and read length >=250 base pairs. High and relatively even coverage are important.
Pull raw and pre-cleaned versions of national and state-level COVID-19 time-series data from covid19india.org <https://www.covid19india.org>. Easily obtain and merge case count data, testing data, and vaccine data. Also assists in calculating the time-varying effective reproduction number with sensible parameters for COVID-19.
Use three methods to estimate parameters from a mediation analysis with a binary misclassified mediator. These methods correct for the problem of "label switching" using Youden's J criteria. A detailed description of the analysis methods is available in Webb and Wells (2024), "Effect estimation in the presence of a misclassified binary mediator" <doi:10.48550/arXiv.2407.06970>.
This k-means algorithm is able to cluster data with missing values and as a by-product completes the data set. The implementation can deal with missing values in multiple variables and is computationally efficient since it iteratively uses the current cluster assignment to define a plausible distribution for missing value imputation. Weights are used to shrink early random draws for missing values (i.e., draws based on the cluster assignments after few iterations) towards the global mean of each feature. This shrinkage slowly fades out after a fixed number of iterations to reflect the increasing credibility of cluster assignments. See the vignette for details.
This package contains the Multi-Species Acute Toxicity Database (CAS & SMILES columns only) [United States (US) Department of Health and Human Services (DHHS) National Institutes of Health (NIH) National Cancer Institute (NCI), "Multi-Species Acute Toxicity Database", <https://cactus.nci.nih.gov/download/acute-toxicity-db/>] combined with the Toxic Substances Control Act (TSCA) Inventory [United States Environmental Protection Agency (US EPA), "Toxic Substances Control Act (TSCA) Chemical Substance Inventory", <https://www.epa.gov/tsca-inventory/how-access-tsca-inventory
Balancing and rounding matrices subject to restrictions. Adjustment of matrices so that columns and rows add up to given vectors, rounding of a matrix while keeping the column and/or row totals, performing these by blocks...
This package contains the adaptation of bubblebath from MATLAB', developed by Adam Danz and available through the MATLAB Central File Exchange, and the tools to transform a dataframe of radii and points to plot-able paths.
This package provides harmonized and non-harmonized population pyramid datasets from the Indonesian population censuses (1971â 2020), along with tools for visualization and an interactive shiny'-based explorer application. Data are processed from IPUMS International (1971â 2010) and the Population Census 2020 (BPS Indonesia).
Multiple comparison techniques are typically applied following an F test from an ANOVA to decide which means are significantly different from one another. As an alternative to traditional methods, cluster analysis can be performed to group the means of different treatments into non-overlapping clusters. Treatments in different groups are considered statistically different. Several approaches have been proposed, with varying clustering methods and cut-off criteria. This package implements cluster-based multiple comparisons tests and also provides a visual representation in the form of a dendrogram. Di Rienzo, J. A., Guzman, A. W., & Casanoves, F. (2002) <jstor.org/stable/1400690>. Bautista, M. G., Smith, D. W., & Steiner, R. L. (1997) <doi:10.2307/1400402>.
CEU (CEU San Pablo University) Mass Mediator is an on-line tool for aiding researchers in performing metabolite annotation. cmmr (CEU Mass Mediator RESTful API) allows for programmatic access in R: batch search, batch advanced search, MS/MS (tandem mass spectrometry) search, etc. For more information about the API Endpoint please go to <https://github.com/YaoxiangLi/cmmr>.
Compute covariate-adjusted specificity at controlled sensitivity level, or covariate-adjusted sensitivity at controlled specificity level, or covariate-adjust receiver operating characteristic curve, or covariate-adjusted thresholds at controlled sensitivity/specificity level. All statistics could also be computed for specific sub-populations given their covariate values. Methods are described in Ziyi Li, Yijian Huang, Datta Patil, Martin G. Sanda (2021+) "Covariate adjustment in continuous biomarker assessment".
Use frequentist and Bayesian methods to estimate parameters from a binary outcome misclassification model. These methods correct for the problem of "label switching" by assuming that the sum of outcome sensitivity and specificity is at least 1. A description of the analysis methods is available in Hochstedler and Wells (2023) <doi:10.48550/arXiv.2303.10215>.