Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Stan-based curve-fitting function for use with package breathtestcore by the same author. Stan functions are refactored here for easier testing.
Bayesian kernel machine regression (from the bkmr package) is a Bayesian semi-parametric generalized linear model approach under identity and probit links. There are a number of functions in this package that extend Bayesian kernel machine regression fits to allow multiple-chain inference and diagnostics, which leverage functions from the future', rstan', and coda packages. Reference: Bobb, J. F., Henn, B. C., Valeri, L., & Coull, B. A. (2018). Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. ; <doi:10.1186/s12940-018-0413-y>.
This package provides a system to facilitate brand identity management using the brand.yml standard, providing functions to consistently access and apply brand colors, typography, and other visual elements across your R projects.
This package implements a wide variety of one- and two-parameter Bayesian CRM designs. The program can run interactively, allowing the user to enter outcomes after each cohort has been recruited, or via simulation to assess operating characteristics. See Sweeting et al. (2013): <doi:10.18637/jss.v054.i13>.
This package provides a convenience package for use while drafting code. It facilitates making stand-out comment lines decorated with bands of characters. The input text strings are converted into R comment lines, suitably formatted. These are then displayed in a console window and, if possible, automatically transferred to a clipboard ready for pasting into an R script. Designed to save time when drafting R scripts that will need to be navigated and maintained by other programmers.
Trading of Butterfly Options Strategies is represented here through their Graphs. The graphic indicators, strategies, calculations, functions and all the discussions are for academic, research, and educational purposes only and should not be construed as investment advice and come with absolutely no Liability. Guy Cohen (â The Bible of Options Strategies (2nd ed.)â , 2015, ISBN: 9780133964028). Zura Kakushadze, Juan A. Serur (â 151 Trading Strategiesâ , 2018, ISBN: 9783030027919). John C. Hull (â Options, Futures, and Other Derivatives (11th ed.)â , 2022, ISBN: 9780136939979).
Model-based clustering using Bayesian parsimonious Gaussian mixture models. MCMC (Markov chain Monte Carlo) are used for parameter estimation. The RJMCMC (Reversible-jump Markov chain Monte Carlo) is used for model selection. GREEN et al. (1995) <doi:10.1093/biomet/82.4.711>.
Computation of key characteristics and plots for blinded sample size recalculation. Continuous as well as binary endpoints are supported in superiority and non-inferiority trials. See Baumann, Pilz, Kieser (2022) <doi:10.32614/RJ-2022-001> for a detailed description. The implemented methods include the approaches by Lu, K. (2019) <doi:10.1002/pst.1737>, Kieser, M. and Friede, T. (2000) <doi:10.1002/(SICI)1097-0258(20000415)19:7%3C901::AID-SIM405%3E3.0.CO;2-L>, Friede, T. and Kieser, M. (2004) <doi:10.1002/pst.140>, Friede, T., Mitchell, C., Mueller-Veltern, G. (2007) <doi:10.1002/bimj.200610373>, and Friede, T. and Kieser, M. (2011) <doi:10.3414/ME09-01-0063>.
Implementation of multisource exchangeability models for Bayesian analyses of prespecified subgroups arising in the context of basket trial design and monitoring. The R basket package facilitates implementation of the binary, symmetric multi-source exchangeability model (MEM) with posterior inference arising from both exact computation and Markov chain Monte Carlo sampling. Analysis output includes full posterior samples as well as posterior probabilities, highest posterior density (HPD) interval boundaries, effective sample sizes (ESS), mean and median estimations, posterior exchangeability probability matrices, and maximum a posteriori MEMs. In addition to providing "basketwise" analyses, the package includes similar calculations for "clusterwise" analyses for which subgroups are combined into meta-baskets, or clusters, using graphical clustering algorithms that treat the posterior exchangeability probabilities as edge weights. In addition plotting tools are provided to visualize basket and cluster densities as well as their exchangeability. References include Hyman, D.M., Puzanov, I., Subbiah, V., Faris, J.E., Chau, I., Blay, J.Y., Wolf, J., Raje, N.S., Diamond, E.L., Hollebecque, A. and Gervais, R (2015) <doi:10.1056/NEJMoa1502309>; Hobbs, B.P. and Landin, R. (2018) <doi:10.1002/sim.7893>; Hobbs, B.P., Kane, M.J., Hong, D.S. and Landin, R. (2018) <doi:10.1093/annonc/mdy457>; and Kaizer, A.M., Koopmeiners, J.S. and Hobbs, B.P. (2017) <doi:10.1093/biostatistics/kxx031>.
This package provides functions are pre-configured to utilize Bootstrap 5 classes and HTML structures to create Bootstrap-styled HTML quickly and easily. Includes functions for creating common Bootstrap elements such as containers, rows, cols, navbars, etc. Intended to be used with the html5 package. Learn more at <https://getbootstrap.com/>.
This package provides a blind spike program provides samples to a laboratory in order to perform quality control (QC) checks. The samples provided are of a known quantity to the tester. The laboratory is typically uninformed of that the sample provided is a QC sample.
Bayesian purity model to estimate tumor purity using methylation array data (DNA methylation Infinium 450K array data) without reference samples.
Making probabilistic projections of total fertility rate for all countries of the world, using a Bayesian hierarchical model <doi:10.1007/s13524-011-0040-5> <doi:10.18637/jss.v106.i08>. Subnational probabilistic projections are also supported <doi:10.4054/DemRes.2018.38.60>.
Search, query, and download tabular and geospatial data from the British Columbia Data Catalogue (<https://catalogue.data.gov.bc.ca/>). Search catalogue data records based on keywords, data licence, sector, data format, and B.C. government organization. View metadata directly in R, download many data formats, and query geospatial data available via the B.C. government Web Feature Service ('WFS') using dplyr syntax.
Fast partial least squares (PLS) for dense and out-of-core data. Provides SIMPLS (straightforward implementation of a statistically inspired modification of the PLS method) and NIPALS (non-linear iterative partial least-squares) solvers, plus kernel-style PLS variants ('kernelpls and widekernelpls') with parity to pls'. Optimized for bigmemory'-backed matrices with streamed cross-products and chunked BLAS (Basic Linear Algebra Subprograms) (XtX/XtY and XXt/YX), optional file-backed score sinks, and deterministic testing helpers. Includes an auto-selection strategy that chooses between XtX SIMPLS, XXt (wide) SIMPLS, and NIPALS based on (n, p) and a configurable memory budget. About the package, Bertrand and Maumy (2023) <https://hal.science/hal-05352069>, and <https://hal.science/hal-05352061> highlighted fitting and cross-validating PLS regression models to big data. For more details about some of the techniques featured in the package, Dayal and MacGregor (1997) <doi:10.1002/(SICI)1099-128X(199701)11:1%3C73::AID-CEM435%3E3.0.CO;2-%23>, Rosipal & Trejo (2001) <https://www.jmlr.org/papers/v2/rosipal01a.html>, Tenenhaus, Viennet, and Saporta (2007) <doi:10.1016/j.csda.2007.01.004>, Rosipal (2004) <doi:10.1007/978-3-540-45167-9_17>, Rosipal (2019) <https://ieeexplore.ieee.org/document/8616346>, Song, Wang, and Bai (2024) <doi:10.1016/j.chemolab.2024.105238>. Includes kernel logistic PLS with C++'-accelerated alternating iteratively reweighted least squares (IRLS) updates, streamed reproducing kernel Hilbert space (RKHS) solvers with reusable centering statistics, and bootstrap diagnostics with graphical summaries for coefficients, scores, and cross-validation workflows, alongside dedicated plotting utilities for individuals, variables, ellipses, and biplots. The streaming backend uses far less memory and keeps memory bounded across data sizes. For PLS1, streaming is often fast enough while preserving a small memory footprint; for PLS2 it remains competitive with a bounded footprint. On small problems that fit comfortably in RAM (random-access memory), dense in-memory solvers are slightly faster; the crossover occurs as n or p grow and the Gram/cross-product cost dominates.
The BayesDLMfMRI package performs statistical analysis for task-based functional magnetic resonance imaging (fMRI) data at both individual and group levels. The analysis to detect brain activation at the individual level is based on modeling the fMRI signal using Matrix-Variate Dynamic Linear Models (MDLM). The analysis for the group stage is based on posterior distributions of the state parameter obtained from the modeling at the individual level. In this way, this package offers several R functions with different algorithms to perform inference on the state parameter to assess brain activation for both individual and group stages. Those functions allow for parallel computation when the analysis is performed for the entire brain as well as analysis at specific voxels when it is required. References: Cardona-Jiménez (2021) <doi:10.1016/j.csda.2021.107297>; Cardona-Jiménez (2021) <arXiv:2111.01318>.
Maleknia et al. (2020) <doi:10.1101/2020.01.13.905448>. A novel pathway enrichment analysis package based on Bayesian network to investigate the topology features of the pathways. firstly, 187 kyoto encyclopedia of genes and genomes (KEGG) human non-metabolic pathways which their cycles were eliminated by biological approach, enter in analysis as Bayesian network structures. The constructed Bayesian network were optimized by the Least Absolute Shrinkage Selector Operator (lasso) and the parameters were learned based on gene expression data. Finally, the impacted pathways were enriched by Fisherâ s Exact Test on significant parameters.
Bayesian approaches for analyzing multivariate data in ecology. Estimation is performed using Markov Chain Monte Carlo (MCMC) methods via Three. JAGS types of models may be fitted: 1) With explanatory variables only, boral fits independent column Generalized Linear Models (GLMs) to each column of the response matrix; 2) With latent variables only, boral fits a purely latent variable model for model-based unconstrained ordination; 3) With explanatory and latent variables, boral fits correlated column GLMs with latent variables to account for any residual correlation between the columns of the response matrix.
Simulation and parameter estimation of multitype Bienayme - Galton - Watson processes.
This package implements bridge models for nowcasting and forecasting macroeconomic variables by linking high-frequency indicator variables (e.g., monthly data) to low-frequency target variables (e.g., quarterly GDP). Simplifies forecasting and aggregating indicator variables to match the target frequency, enabling timely predictions ahead of official data releases. For more on bridge models, see Baffigi, A., Golinelli, R., & Parigi, G. (2004) <doi:10.1016/S0169-2070(03)00067-0>, Burri (2023) <https://www5.unine.ch/RePEc/ftp/irn/pdfs/WP23-02.pdf> or Schumacher (2016) <doi:10.1016/j.ijforecast.2015.07.004>.
Miscellaneous R functions, including functions related to graphics (mostly for base graphics), permutation tests, running mean/median, and general utilities.
It offers simplified access to Brazilian macroeconomic and financial indicators selected from official sources, such as the IBGE (Brazilian Institute of Geography and Statistics) via the SIDRA API and the Central Bank of Brazil via the SGS API. It allows users to quickly retrieve and visualize data series such as the unemployment rate and the Selic interest rate. This package was developed for data access and visualization purposes, without generating forecasts or statistical results. For more information, see the official APIs: <https://sidra.ibge.gov.br/> and <https://dadosabertos.bcb.gov.br/dataset/>.
The Bayesian Adjustment for Confounding (BAC) algorithm (Wang et al., 2012) can be used to estimate the causal effect of a continuous exposure on a continuous outcome. This package provides an approximate sensitivity analysis of BAC with regards to the hyperparameter omega. BACprior also provides functions to guide the user in their choice of an appropriate omega value. The method is based on Lefebvre, Atherton and Talbot (2014).
The backtest package provides facilities for exploring portfolio-based conjectures about financial instruments (stocks, bonds, swaps, options, et cetera).