Analyze multilevel networks as described in Lazega et al (2008) <doi:10.1016/j.socnet.2008.02.001> and in Lazega and Snijders (2016, ISBN:978-3-319-24520-1). The package was developed essentially as an extension to igraph'.
Model fitting and simulation for Gaussian and logistic inner product MultiNeSS models for multiplex networks. The package implements a convex fitting algorithm with fully adaptive parameter tuning, including options for edge cross-validation. For more details see MacDonald et al. (2020).
Implementation of the methodology of Aleshin-Guendel & Sadinle (2022) <doi:10.1080/01621459.2021.2013242>. It handles the general problem of multifile record linkage and duplicate detection, where any number of files are to be linked, and any of the files may have duplicates.
Wrapper around the Unix join facility which is more efficient than the built-in R routine merge(). The package enables the joining of multiple files on disk at once. The files can be compressed and various filters can be deployed before joining. Compiles only under Unix.
Different examples and methods for testing (including different proposals described in Ameijeiras-Alonso et al., 2019 <DOI:10.1007/s11749-018-0611-5>) and exploring (including the mode tree, mode forest and SiZer) the number of modes using nonparametric techniques <DOI:10.18637/jss.v097.i09>.
Provides Emacs Lisp with a form of polymorphism by way of predicate dispatching. Methods consist of a dispatch function, and a series of branches. The dispatch function is applied to the arguments, and the result value is checked against the expectations of each branch to define which one to invoke.
Multimon-ng can decode several digital radio transmission modes:
POCSAG512, POCSAG1200, POCSAG2400
FLEX
EAS
UFSK1200, CLIPFSK, AFSK1200, AFSK2400, AFSK2400_2, AFSK2400_3
HAPN4800
FSK9600
DTMF
ZVEI1, ZVEI2, ZVEI3, DZVEI, PZVEI
EEA, EIA, CCIR
MORSE CW
X10
Run the same analysis over a range of arbitrary data processing decisions. multitool provides an interface for creating alternative analysis pipelines and turning them into a grid of all possible pipelines. Using this grid as a blueprint, you can model your data across all possible pipelines and summarize the results.
Nonparametric approach to estimate the location of block boundaries (change-points) of non-overlapping blocks in a random symmetric matrix which consists of random variables whose distribution changes from block to block. BRAULT Vincent, OUADAH Sarah, SANSONNET Laure and LEVY-LEDUC Celine (2017) <doi:10.1016/j.jmva.2017.12.005>.
Fits the Multiple Random Dot Product Graph Model and performs a test for whether two networks come from the same distribution. Both methods are proposed in Nielsen, A.M., Witten, D., (2018) "The Multiple Random Dot Product Graph Model", arXiv preprint <arXiv:1811.12172> (Submitted to Journal of Computational and Graphical Statistics).
This package provides methods for the analysis of how ecological drivers affect the multifunctionality of an ecosystem based on methods of Byrnes et al. 2016 <doi:10.1111/2041-210X.12143> and Byrnes et al. 2022 <doi:10.1101/2022.03.17.484802>. Most standard methods in the literature are implemented (see vignettes) in a tidy format.
Implementation of commonly used p-value-based and parametric multiple testing procedures (computation of adjusted p-values and simultaneous confidence intervals) and parallel gatekeeping procedures based on the methodology presented in the book "Multiple Testing Problems in Pharmaceutical Statistics" (edited by Alex Dmitrienko, Ajit C. Tamhane and Frank Bretz) published by Chapman and Hall/CRC Press 2009.
Computation of the multivariate marine recovery index, including functions for data visualization and ecological diagnostics of marine ecosystems. The computational details are described in the original publication. Reference: Chauvel, N., Grall, J., Thiébaut, E., Houbin, C., Pezy, J.P. (in press). "A general-purpose Multivariate Marine Recovery Index for quantifying the influence of human activities on benthic habitat ecological status". Ecological Indicators.
ExperimentHubData package for the mulea comprehensive overrepresentation and functional enrichment analyser R package. Here we provide ontologies (gene sets) in a data.frame for 27 different organisms, ranging from Escherichia coli to human, all acquired from publicly available data sources. Each ontology is provided with multiple gene and protein identifiers. Please see the NEWS file for a list of changes in each version.
This package provides a graphical user interface tool to estimate ploidy from DNA cells stained with fluorescent dyes and analyzed by flow cytometry, following the methodology of Gómez-Muñoz and Fischer (2024) <doi:10.1101/2024.01.24.577056>. Features include multiple file uploading and configuration, peak fluorescence intensity detection, histogram visualizations, peak error curation, ploidy and genome size calculations, and easy results export.
This package provides functions to calculate Unique Trait Combinations (UTC) and scaled Unique Trait Combinations (sUTC) as measures of multivariate richness. The package can also calculate beta-diversity for trait richness and can partition this into nestedness-related and turnover components. The code will also calculate several measures of overlap. See Keyel and Wiegand (2016) <doi:10.1111/2041-210X.12558> for more details.
In the case of multivariate ordinal responses, parameter estimates can be severely biased if personal response styles are ignored. This packages provides methods to account for personal response styles and to explain the effects of covariates on the response style, as proposed by Schauberger and Tutz 2021 <doi:10.1177/1471082X20978034>. The method is implemented both for the multivariate cumulative model and the multivariate adjacent categories model.
The detection of worrying approximate collinearity in a multiple linear regression model is a problem addressed in all existing statistical packages. However, we have detected deficits regarding to the incorrect treatment of qualitative independent variables and the role of the intercept of the model. The objective of this package is to correct these deficits. In this package will be available detection and treatment techniques traditionally used as the recently developed.
Simulating data and fitting multi-species N-mixture models using nimble'. Includes features for handling zero-inflation and temporal correlation, Bayesian inference, model diagnostics, parameter estimation, and predictive checks. Designed for ecological studies with zero-altered or time-series data. Mimnagh, N., Parnell, A., Prado, E., & Moral, R. A. (2022) <doi:10.1007/s10651-022-00542-7>. Royle, J. A. (2004) <doi:10.1111/j.0006-341X.2004.00142.x>.
Computation of an estimation of the long-memory parameters and the long-run covariance matrix using a multivariate model (Lobato (1999) <doi:10.1016/S0304-4076(98)00038-4>; Shimotsu (2007) <doi:10.1016/j.jeconom.2006.01.003>). Two semi-parametric methods are implemented: a Fourier based approach (Shimotsu (2007) <doi:10.1016/j.jeconom.2006.01.003>) and a wavelet based approach (Achard and Gannaz (2016) <doi:10.1111/jtsa.12170>).
An implementation for multivariate functional additive mixed models (multiFAMM), see Volkmann et al. (2021, <arXiv:2103.06606>). It builds on developed methods for univariate sparse functional regression models and multivariate functional principal component analysis. This package contains the function to run a multiFAMM and some convenience functions useful when working with large models. An additional package on GitHub contains more convenience functions to reproduce the analyses of the corresponding paper (<https://github.com/alexvolkmann/multifammPaper>).
We introduce factor models designed to jointly analyze high-dimensional count data from multiple studies by extracting study-shared and specified factors. Our factor models account for heterogeneous noises and overdispersion among counts with augmented covariates. We propose an efficient and speedy variational estimation procedure for estimating model parameters, along with a novel criterion for selecting the optimal number of factors and the rank of regression coefficient matrix. More details can be referred to Liu et al. (2024) <doi:10.48550/arXiv.2402.15071>.
This package provides a comprehensive and computationally fast framework to analyze high dimensional data associated with an experimental design based on Multiple ANOVAs (MultANOVA). It includes testing the overall significance of terms in the model, post-hoc analyses of significant terms and variable selection. Details may be found in Mahieu, B., & Cariou, V. (2025). MultANOVA Followed by Post Hoc Analyses for Designed Highâ Dimensional Data: A Comprehensive Framework That Outperforms ASCA, rMANOVA, and VASCA. Journal of Chemometrics, 39(7). <doi:10.1002/cem.70039>.
Quantify the causal effect of a binary exposure on a binary outcome with adjustment for multiple biases. The functions can simultaneously adjust for any combination of uncontrolled confounding, exposure/outcome misclassification, and selection bias. The underlying method generalizes the concept of combining inverse probability of selection weighting with predictive value weighting. Simultaneous multi-bias analysis can be used to enhance the validity and transparency of real-world evidence obtained from observational, longitudinal studies. Based on the work from Paul Brendel, Aracelis Torres, and Onyebuchi Arah (2023) <doi:10.1093/ije/dyad001>.