Wrapper for minepy implementation of Maximal Information-based Nonparametric Exploration statistics (MIC and MINE family). Detailed information of the ANSI C implementation of minepy can be found at <http://minepy.readthedocs.io/en/latest>.
Based on a large miRNA
dilution study, this package provides tools to read in the raw amplification data and use these data to assess the performance of methods that estimate expression from the amplification curves.
Our approach uses a mixture of multilayer stochastic block models to group co-membership matrices with similar information into components and to partition observations into different clusters. See De Santiago (2023, ISBN: 978-2-87587-088-9).
Data-driven approach for Exploratory Factor Analysis (EFA) that uses Model Implied Instrumental Variables (MIIVs). The method starts with a one factor model and arrives at a suggested model with enhanced interpretability that allows cross-loadings and correlated errors.
Imputation of incomplete continuous or categorical datasets; Missing values are imputed with a principal component analysis (PCA), a multiple correspondence analysis (MCA) model or a multiple factor analysis (MFA) model; Perform multiple imputation with and in PCA or MCA.
Various tools for microeconomic analysis and microeconomic modelling, e.g. estimating quadratic, Cobb-Douglas and Translog functions, calculating partial derivatives and elasticities of these functions, and calculating Hessian matrices, checking curvature and preparing restrictions for imposing monotonicity of Translog functions.
This package provides a collection of functions to perform various meta-analytical models through a unified mixed-effects framework, including standard univariate fixed and random-effects meta-analysis and meta-regression, and non-standard extensions such as multivariate, multilevel, longitudinal, and dose-response models.
Density, distribution function, ... hazard function, cumulative hazard function, survival function for survival distributions with piece-wise constant hazards and multiple states and methods to plot and summarise those distributions. A derivation of the used algorithms can be found in my masters thesis <doi:10.25365/thesis.76098>.
Millefy
is a tool for visualizing read coverage of scRNA-seq(single-cell RNA sequencing) datasets in genomic contexts. By dynamically and automatically reorder single cells based on locus-specific pseudo time, Millefy
highlights cell-to-cell heterogeneity in read coverage of scRNA-seq data.
This is a R implementation of "Minimum SNPs" software as described in "Price E.P., Inman-Bamber, J., Thiruvenkataswamy, V., Huygens, F and Giffard, P.M." (2007) <doi:10.1186/1471-2105-8-278> "Computer-aided identification of polymorphism sets diagnostic for groups of bacterial and viral genetic variants.".
This package provides singular value decomposition based estimation algorithms for exploratory item factor analysis (IFA) based on multidimensional item response theory models. For more information, please refer to: Zhang, H., Chen, Y., & Li, X. (2020). A note on exploratory item factor analysis by singular value decomposition. Psychometrika, 1-15, <DOI:10.1007/s11336-020-09704-7>.
Statistical framework for comparing sets of trees using hypothesis testing methods. Designed for transmission trees, phylogenetic trees, and directed acyclic graphs (DAGs), the package implements chi-squared tests to compare edge frequencies between sets and PERMANOVA to analyse topological dissimilarities with customisable distance metrics, following Anderson (2001) <doi:10.1111/j.1442-9993.2001.01070.pp.x>.
This package provides functions to fit finite mixture of scale mixture of skew-normal (FM-SMSN) distributions, details in Prates, Lachos and Cabral (2013) <doi: 10.18637/jss.v054.i12>, Cabral, Lachos and Prates (2012) <doi:10.1016/j.csda.2011.06.026> and Basso, Lachos, Cabral and Ghosh (2010) <doi:10.1016/j.csda.2009.09.031>.
R is a language and environment for statistical computing and graphics. It provides a variety of statistical techniques, such as linear and nonlinear modeling, classical statistical tests, time-series analysis, classification and clustering. It also provides robust support for producing publication-quality data plots. A large amount of 3rd-party packages are available, greatly increasing its breadth and scope.
R is a language and environment for statistical computing and graphics. It provides a variety of statistical techniques, such as linear and nonlinear modeling, classical statistical tests, time-series analysis, classification and clustering. It also provides robust support for producing publication-quality data plots. A large amount of 3rd-party packages are available, greatly increasing its breadth and scope.
R is a language and environment for statistical computing and graphics. It provides a variety of statistical techniques, such as linear and nonlinear modeling, classical statistical tests, time-series analysis, classification and clustering. It also provides robust support for producing publication-quality data plots. A large amount of 3rd-party packages are available, greatly increasing its breadth and scope.
R is a language and environment for statistical computing and graphics. It provides a variety of statistical techniques, such as linear and nonlinear modeling, classical statistical tests, time-series analysis, classification and clustering. It also provides robust support for producing publication-quality data plots. A large amount of 3rd-party packages are available, greatly increasing its breadth and scope.
R is a language and environment for statistical computing and graphics. It provides a variety of statistical techniques, such as linear and nonlinear modeling, classical statistical tests, time-series analysis, classification and clustering. It also provides robust support for producing publication-quality data plots. A large amount of 3rd-party packages are available, greatly increasing its breadth and scope.
R is a language and environment for statistical computing and graphics. It provides a variety of statistical techniques, such as linear and nonlinear modeling, classical statistical tests, time-series analysis, classification and clustering. It also provides robust support for producing publication-quality data plots. A large amount of 3rd-party packages are available, greatly increasing its breadth and scope.
R is a language and environment for statistical computing and graphics. It provides a variety of statistical techniques, such as linear and nonlinear modeling, classical statistical tests, time-series analysis, classification and clustering. It also provides robust support for producing publication-quality data plots. A large amount of 3rd-party packages are available, greatly increasing its breadth and scope.
This package provides a collection of miscellaneous methods to simplify various tasks, including plotting, data.frame and matrix transformations, environment functions, regular expression methods, and string and logical operations, as well as numerical and statistical tools. Most of the methods are simple but useful wrappers of common base R functions, which extend S3 generics or provide default values for important parameters.
The goal of MineICA
is to perform Independent Component Analysis (ICA) on multiple transcriptome datasets, integrating additional data (e.g molecular, clinical and pathological). This Integrative ICA helps the biological interpretation of the components by studying their association with variables (e.g sample annotations) and gene sets, and enables the comparison of components from different datasets using correlation-based graph.
Estimates Variable Length Markov Chains (VLMC) models and VLMC with covariates models from discrete sequences. Supports model selection via information criteria and simulation of new sequences from an estimated model. See Bühlmann, P. and Wyner, A. J. (1999) <doi:10.1214/aos/1018031204> for VLMC and Zanin Zambom, A., Kim, S. and Lopes Garcia, N. (2022) <doi:10.1111/jtsa.12615> for VLMC with covariates.
An implementation of 14 parsimonious mixture models for model-based clustering or model-based classification. Gaussian, Student's t, generalized hyperbolic, variance-gamma or skew-t mixtures are available. All approaches work with missing data. Celeux and Govaert (1995) <doi:10.1016/0031-3203(94)00125-6>, Browne and McNicholas
(2014) <doi:10.1007/s11634-013-0139-1>, Browne and McNicholas
(2015) <doi:10.1002/cjs.11246>.