This package provides Ruby support for the HOCON configuration file format. It supports parsing and modifying HOCON and JSON files, and rendering parsed objects back to a String.
An expansion of R's stats random wishart matrix generation. This package allows the user to generate singular, Uhlig and Harald (1994) <doi:10.1214/aos/1176325375>, and pseudo wishart, Diaz-Garcia, et al.(1997) <doi:10.1006/jmva.1997.1689>, matrices. In addition the user can generate wishart matrices with fractional degrees of freedom, Adhikari (2008) <doi:10.1061/(ASCE)0733-9399(2008)134:12(1029)>, commonly used in volatility modeling. Users can also use this package to create random covariance matrices.
This package provides an API to work with Redatam (see <https://redatam.org>) databases in both formats: RXDB (new format) and DICX (old format) and running Redatam programs written in SPC language. It's a wrapper around Redatam core and provides functions to open/close a database (redatam_open()/redatam_close()), list entities and variables from the database (redatam_entities(), redatam_variables()) and execute a SPC program and gets the results as data frames (redatam_query(), redatam_run()).
Extends the functionality of the RTMB <https://kaskr.r-universe.dev/RTMB> package by providing a collection of non-standard probability distributions compatible with automatic differentiation (AD). While RTMB enables flexible and efficient modelling, including random effects, its built-in support is limited to standard distributions. The package adds additional AD-compatible distributions, broadening the range of models that can be implemented and estimated using RTMB'. Automatic differentiation and Laplace approximation are described in Kristensen et al. (2016) <doi:10.18637/jss.v070.i05>.
This package provides tools for downloading and extracting data from the Copernicus "Agrometeorological indicators from 1979 to present derived from reanalysis" <https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-agrometeorological-indicators?tab=overview> (AgERA5).
API to the database of CRAN package downloads from the RStudio CRAN mirror'. The database itself is at <http://cranlogs.r-pkg.org>, see <https://github.com/r-hub/cranlogs.app> for the raw API'.
This package provides tools for the fitting and cross validation of exact conditional logistic regression models with lasso and elastic net penalties. Uses cyclic coordinate descent and warm starts to compute the entire path efficiently.
Resampling is a standard step in particle filtering and in sequential Monte Carlo. This package implements the chopthin resampler, which keeps a bound on the ratio between the largest and the smallest weights after resampling.
Evaluates the empirical characteristic function of univariate and multivariate samples. This package uses RcppArmadillo for fast evaluation. It is also possible to export the code to be used in other packages at C++ level.
Saves a ggplot object into multiple files, each with a layer added incrementally. Generally to be used in presentation slides. Flexible enough to allow different file types for the final complete plot, and intermediate builds.
Spatio-temporal radial basis functions (optimization, prediction and cross-validation), summary statistics from cross-validation, Adjusting distance-based linear regression model and generation of the principal coordinates of a new individual from Gower's distance.
Allows get address and port of the free proxy server, from one of two services <http://gimmeproxy.com/> or <https://getproxylist.com/>. And it's easy to redirect your Internet connection through a proxy server.
Multiple matrices/tensors can be specified and decomposed simultaneously by Probabilistic Latent Tensor Factorisation (PLTF). See the reference section of GitHub README.md <https://github.com/rikenbit/gcTensor>, for details of the method.
Initializes a class that obtains API credentials and provides a method to use those credentials to make GET requests to the Hakai API server. Usage instructions are documented at <https://hakaiinstitute.github.io/hakai-api/>.
This package provides an R version of the InterVA4 software (<http://www.interva.net>) for coding cause of death from verbal autopsies. It also provides simple graphical representation of individual and population level statistics.
Pre-processing and basic analytical tasks for working with Eurostat's symmetric inputâ output tables, and basic inputâ output economics calculations. Part of rOpenGov <https://ropengov.github.io/> for open source open government initiatives.
Generate interactive volcano plots for exploring gene expression data. Built with ggplot2', the plots are rendered interactive using ggiraph', enabling users to hover over points to display detailed information or click to trigger custom actions.
New kernel-based test and fast tests for testing whether two samples are from the same distribution. They work well particularly for high-dimensional data. Song, H. and Chen, H. (2023) <arXiv:2011.06127>.
Gene Expression datasets for the MM2S package. Contains normalized expression data for Human Medulloblastoma ('GSE37418') as well as Mouse Medulloblastoma models ('GSE36594'). Deena Gendoo et al. (2015) <doi:10.1016/j.ygeno.2015.05.002>.
This package provides a navigation menu to enable pipe-friendly data processing for hierarchical data structures. By activating the menu items, you can perform operations on each item while maintaining the overall structure in attributes.
Geocode with the OpenCage API, either from place name to longitude and latitude (forward geocoding) or from longitude and latitude to the name and address of a location (reverse geocoding), see <https://opencagedata.com/>.
An implementation of a formal grammar and parser for R Markdown documents using the Boost Spirit X3 library. It also includes a collection of high level functions for working with the resulting abstract syntax tree.
Supports maximum likelihood inference for the Pearson VII distribution with shape parameter 3/2 and free location and scale parameters. This distribution is relevant when estimating the velocity of processive motor proteins with random detachment.
Runs generalized and multinominal logistic (GLM and MLM) models, as well as random forest (RF), Bagging (BAG), and Boosting (BOOST). This package prints out to predictive outcomes easy for the selected data and data splits.